
 盲诲 盶 相�相ȰȰȰ ″
© 2008 Barry Burd Page 1

Short Circuit Evaluation of Java's Boolean Operators

Here's a table describing four of Java's boolean operators:

 Meaning Short circuit?

&& and yes

& and no

|| or yes

| or no

The && and || operators are short circuit operators. A short circuit operator is one that doesn't

necessarily evaluate all of its operands. Take, for example, the operator &&. What happens when Java

executes the following code?

 if (0 == 1 && 2 + 2 == 4) {

 out.println("This line won't be printed.");

 }

You might expect Java to ask itself if 0 equals 1, and then ask if 2 + 2 equals 4. But with Java's &&

operator, that's not what happens. Instead, Java does the following:

 Evaluate 0 == 1, discovering that 0 == 1 is false.

Realize that the condition (0 == 1 && whatever) can't possibly be true, no matter what

the whatever condition happens to be.

Return false (without bothering to check if 2 + 2 == 4).

The condition (0 == 1 && whatever) has to be false, because 0 == 1 is false. (Remember,

the && operator wants both conditions, on its left and right sides, to be true.)

So when Java finds the value on the left side of an && operator to be false, then Java gives up and

declares the entire expression to be false. That's called short circuit expression evaluation. The same

kind of thing happens with the || operator (another short circuit operator) when the value on the

operator's left side is true.

 if (2 + 2 == 4 || 0 == 1) {

 out.println("This line will be printed.");

 }

Here's how Java's || operator behaves when it encounters this code:

 Evaluate 2 + 2 == 4, discovering that 2 + 2 == 4 is true.

Realize that the condition (2 + 2 == 4 || whatever) must be true, no matter what

the whatever condition happens to be.

© 2008 Barry Burd Page 2

Return true (without bothering to check if 0 == 1).

The condition (2 + 2 == 4 || whatever) has to be true, because 2 + 2 == 4 is true.

(Remember, the || operator wants either condition, on its left or right side or on both sides, to be

true.)

So when Java finds the value on the left side of an || operator to be true, then Java declares the

entire expression to be true.

Java's && and || operators use short circuit evaluation. Java's & and | operators also test for the "and"

and "or" conditions, but these & and | operators don't do short circuit evaluation. In other words, when

Java encounters the following code, Java checks to see if 0 == 1 is true and then, before giving its

final answer, checks to see if 2 + 2 == 4 is true.

 if (0 == 1 && 2 + 2 == 4) {

 out.println("This line won't be printed.");

 }

Here's a program to illustrate each operator's behavior:

import static java.lang.System.out;;

public class OperatorEvalDemo {

 public static void main(String args[]) {

 new OperatorEvalDemo();

 }

 OperatorEvalDemo() {

 if (0 == 1 && 2 + 2 == 4) {

 out.println("(0 == 1 && 2 + 2 == 4) is true");

 } else {

 out.println("(0 == 1 && 2 + 2 == 4) is false");

 }

 out.println();

 if (2 + 2 == 4 || 0 == 1) {

 out.println("(2 + 2 == 4 || 0 == 1) is true");

 } else {

 out.println("(2 + 2 == 4 || 0 == 1) is false");

 }

 out.println();

 if (isFalse() && isTrue()) {

bburd
Rectangle

© 2008 Barry Burd Page 3

 out.println("(isFalse() && isTrue()) is true");

 } else {

 out.println("(isFalse() && isTrue()) is false");

 }

 out.println();

 if (isFalse() & isTrue()) {

 out.println("(isFalse() & isTrue()) is true");

 } else {

 out.println("(isFalse() & isTrue()) is false");

 }

 out.println();

 if (isTrue() || isFalse()) {

 out.println("(isTrue() || isFalse()) is true");

 } else {

 out.println("(isTrue() || isFalse()) is false");

 }

 out.println();

 if (isTrue() | isFalse()) {

 out.println("(isTrue() | isFalse()) is true");

 } else {

 out.println("(isTrue() | isFalse()) is false");

 }

 }

 boolean isTrue() {

 out.println("Executing isTrue");

 return true;

 }

 boolean isFalse() {

 out.println("Executing isFalse");

 return false;

 }

}

© 2008 Barry Burd Page 4

And here's the program's output:

(0 == 1 && 2 + 2 == 4) is false

(2 + 2 == 4 || 0 == 1) is true

Executing isFalse

(isFalse() && isTrue()) is false

Executing isFalse

Executing isTrue

(isFalse() & isTrue()) is false

Executing isTrue

(isTrue() || isFalse()) is true

Executing isTrue

Executing isFalse

(isTrue() | isFalse()) is truea

Notice, for example, what happens with the && operator. Java displays Executing isFalse. But

then Java doesn't display Executing isTrue because the && operator does short circuit evaluation.

On the other hand, Java displays both Executing isFalse and Executing isTrue for the &

operator, because the & operator doesn't do short circuit evaluation.

You may wonder why anyone would use one kind of operator instead of another. Consider the following

code:

public class Oops {

 public static void main(String args[]) {

 Integer myInt;

 myInt = new Integer(42);

 if (myInt != null && myInt.intValue() == 42) {

 System.out.println("Comparing 42 to 42");

 }

 myInt = null;

 if (myInt != null & myInt.intValue() == 42) {

 System.out.println("Comparing null to 42");

 }

 }

}

© 2008 Barry Burd Page 5

Here's the code's output:

Comparing 42 to 42

Exception in thread "main" java.lang.NullPointerException

 at SideEffectDemo.main(SideEffectDemo.java:12)

This code checks twice to see if myInt != null and myInt.intValue() == 42. The first time

around, the code uses short circuit evaluation. This is good because in this example, short circuit

evaluation prevents Java from checking myInt.intValue() == 42.

But the second time around, the code doesn't use short circuit evaluation. No matter what happens

when Java evaluates, myInt != null, the & operator marches on and evaluates

myInt.intValue() == 42.

But here's the rub: If myInt has the value null, then the test is myInt.intValue() == 42

destined to crash. This happens because you can't call a method (such as intValue()) on a null

value. If you try, you get a nullPointerException. So in this example, the && operator's short

circuit evaluation saves you from crashing your program.

Occasionally you find situations in which you don't want short circuit evaluation. Usually these situations

involve an evaluation's side effect. A side effect is something extra that happens during the evaluation of

an expression. For example, in the OperatorEvalDemo program, displaying the line Executing

isTrue is a side effect of evaluating the isTrue() expression.

Maybe, instead of displaying Executing ... lines, your methods check and make fine adjustments

to a heart monitor and a lung monitor.

if (checkAdjustHeart() & checkAdjustLung()) {

 System.out.println("Both monitors are OK");

}

You may want to force Java to call both methods, even if the first method returns a false ("not OK")

result. The && operator's short circuit evaluation doesn't always call both methods. So in this scenario,

you use the & operator.

The Hotel Example in Java For Dummies

Consider the following code (from Java For Dummies, 4th Edition):

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

© 2008 Barry Burd Page 6

import java.io.PrintStream;

public class FindVacancy {

 public static void main(String args[])

 throws IOException {

 Scanner kbdScanner = new Scanner(System.in);

 Scanner diskScanner =

 new Scanner(new File("GuestList.txt"));

 int guests[] = new int[10];

 int roomNum;

 for (roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt();

 }

 roomNum = 0;

 while (roomNum < 10 && guests[roomNum] != 0) {

 roomNum++;

 }

 if (roomNum == 10) {

 out.println("Sorry, no v cancy");

 } else {

 out.print("How many people for room ");

 out.print(roomNum);

 out.print("? ");

 guests[roomNum] = kbdScanner.nextInt();

 PrintStream listOut =

 new PrintStream("GuestList.txt");

 for (roomNum = 0; roomNum < 10; roomNum++) {

 listOut.print(guests[roomNum]);

 listOut.print(" ");

 }

 }

 }

}

The guests array is declared as follows:

int guests[] = new int[10];

© 2008 Barry Burd Page 7

So there are elements named guests[0], guests[1], and so on up to (and including) guests[9].

There's no guests[10] element, so if Java tries to evaluate the expression

guests[10] != 0

then the program crashes with an ArrayIndexOutOfBoundsException. Now look at the while

statement in the FindVacancy code:

 while (roomNum < 10 && guests[roomNum] != 0) {

 roomNum++;

 }

What happens if the value of the roomNum variable is exactly 10? Then, because of the && operator's

short circuit evaluation, Java never evaluates the guests[roomNum] != 0 expression. So the

program doesn't crash.

But what if you reverse the tests in the while statement's condition?

 while (guests[roomNum] != 0 && roomNum < 10) {

 roomNum++;

 }

Then the program can crash. Java evaluates boolean conditions from left to right. (This happens with

both the short circuit && and || operators and with the non-short circuit & and | operators.) So before

checking to make sure that roomNum < 10, Java evaluates the leftmost expression,

guests[roomNum] != 0. Then Java tries to interpret guests[10] and crashes (because there's

no guests[10] element).

The bottom line is, you must check roomNum < 10 before you check guests[roomNum] != 0. To

force Java to do the roomNum < 10 check first, you put roomNum < 10 on the left side of the

while statement's condition. With roomNum < 10 on the left side of the && operator, short circuit

evaluation prevents Java from accidentally evaluating guests[roomNum] != 0 with roomNum

equal to 10. Pretty slick, heh?

