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4 LAURENT’S THEOREM FOR COMPLEX FUNCTIONS

Consider the function f : C \ {2} → C given by f (z) = 1
z−2 . By Taylor’s

theorem, f has a Taylor series centered at z0 = 0 with neighborhood of con-
vergence N2(0). That is,

f (z) =
∞∑

j=0

f (j)(0)
j!

zj on N2(0).

But this function f is also defined for |z| > 2, so it is natural to ask if f
can be represented by some (other) series expansion centered at z0 = 0 and
convergent for |z| > 2. To explore this, note that

f (z) =
1

z − 2
=

1
z

(
1

1− 2
z

)
=

1
z

∞∑

j=0

(2
z

)j
=
∞∑

j=0

2j

zj+1 ,

and this series converges for
∣∣ 2
z

∣∣ < 1, i.e., for |z| > 2. This type of power
series, which involves powers of 1

z−z0
, or equivalently, negative powers of

(z − z0), is known as a Laurent series. More generally, the form of a Laurent
series centered at a point z0 involves both positive and negative powers of
(z − z0), that is,

f (z) =
∞∑

j=0

aj(z − z0)j +
∞∑

j=1

bj

(z − z0)j
, (9.21)

and so it consists of two infinite series. The first series in (9.21) is often referred
to as the analytic part and the second series in (9.21) is often referred to as
the singular part, or the principal part of the Laurent series. For the Laurent
series expansion to exist at a particular z ∈ C, both the analytic part and the
singular part must be convergent at z. In fact, the analytic part consisting
of positive powers of (z − z0) will converge for all z inside some circle of
radius R, while the singular part consisting of negative powers of (z − z0)
will converge for all z outside some circle of radius r, as in our example. It
is the overlap of the two regions of convergence associated with the analytic
part and the singular part that comprises the region of convergence of the
Laurent series. This region of overlap is typically the annulus centered at z0
and denoted by AR

r (z0) = {z ∈ C : r < |z − z0| < R}. See Figure 9.3 for an
illustration. The situation R = ∞ and r = 0 corresponds to the case where
the Laurent series converges everywhere in C except possibly at z0. (In our
particular example, we have convergence in the annulus A∞2 (0).) Note that
since the annulus so described excludes the point z0, it is not necessary that f
be differentiable at z0 for it to have a Laurent series expansion centered there.
(In fact, the function f need not be differentiable anywhere within Nr(z0).)

If 0 < r < r1 < R1 < R we will refer to the annulus AR1
r1 (z0) ⊂ AR

r (z0)
as a proper subannulus of AR

r (z0). In a manner similar to that of a convergent
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z0
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A
R

r (z0)

Figure 9.3 The region of convergence of a Laurent series.

Taylor series on subsets of its neighborhood of convergence, when a function
f has a convergent Laurent series expansion on an annulus AR

r (z0), it will

converge absolutely on AR
r (z0) and uniformly on AR1

r1 (z0) where AR1
r1 (z0) is

any proper subannulus of AR
r (z0). To establish this, we must consider the

convergence of a given Laurent series a bit more carefully. Since the analytic
part of the Laurent series is a power series, it will converge absolutely on its
neighborhood of convergence NR(z0). Recall that the convergence is uniform
on NR1(z0) for any 0 < R1 < R. To analyze the singular part, we define

r ≡ inf
{
|z − z0| :

∞∑

j=1

bj

(z − z0)j
converges

}
.

If r fails to exist then the singular part never converges. If r exists then we
will show that the singular part converges absolutely for (Nr(z0))C , and uni-
formly on (Nr1 (z0))C for any r1 > r. To see this, choose r1 > r. Then as indi-
cated in Figure 9.4 there exists z1 such that r ≤ |z1−z0| < r1 and

∑∞
j=1

bj

(z1−z0)j

converges. Therefore, there exists M ≥ 0 such that
∣∣∣∣

bj

(z1 − z0)j

∣∣∣∣ ≤ M for all j ≥ 1.

Now, for z ∈ (Nr1 (z0))C we have
∣∣∣∣

bj

(z − z0)j

∣∣∣∣ =
∣∣∣∣

bj

(z1 − z0)j

∣∣∣∣
( |z1 − z0|
|z − z0|

)j

≤ M

( |z1 − z0|
r1

)j

.

Since |z1−z0| < r1 this establishes via the Weierstrass M-test that
∑∞

j=1
bj

(z−z0)j

converges absolutely on (Nr(z0))C and uniformly on (Nr1(z0))C . Since r1 > r
was arbitrary, this result holds for any r1 > r. We leave it to the reader to
show that

∑∞
j=1

bj

(z−z0)j diverges on Nr(z0). As with a Taylor series, the points
on the boundary Cr(z0) must be studied individually.
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r

r1z0

Figure 9.4 The regions of convergence and divergence of the singular part of a Laurent series.

I 9.42 As claimed above, show that
∑∞

j=1
bj

(z−z0)j diverges on Nr(z0).

The above discussion and exercise establish the following result.

Proposition 4.1 Suppose f : D → C has a Laurent series expansion f (z) =∑∞
j=0 aj(z − z0)j +

∑∞
j=1

bj

(z−z0)j on the annulus AR
r (z0) ⊂ D (where r ≥ 0 and R

may be ∞). Then for any proper subannulus AR1
r1 (z0) ⊂ AR

r (z0) the given Laurent

series expansion for f converges absolutely on AR1
r1 (z0) and uniformly on AR1

r1 (z0).

This result, in turn, implies the following. It will be instrumental in proving
part of the key result of this section.

Proposition 4.2 Let
∑∞

j=1
bj

(z−z0)j be the singular part of a Laurent series expan-

sion for f : D → C on AR
r (z0) ⊂ D. Then

∑∞
j=1

bj

(z−z0)j represents a continuous

function on (Nr(z0))C , and for any contour C ⊂ (Nr(z0))C we have
∫

C

( ∞∑

j=1

bj

(z − z0)j

)
dz =

∞∑

j=1

∫

C

bj

(z − z0)j
dz.

I 9.43 Prove the above proposition.

It is also true, and of great practical value as we will see, that when a Laurent
series expansion exists for a function it is unique. To see this, suppose f is
differentiable on the annulus AR

r (z0) and suppose too that it has a convergent
Laurent series there given by

f (z) =
∞∑

k=0

ak(z − z0)k +
∞∑

k=1

bk

(z − z0)k
. (9.22)
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Recall that we established the uniqueness of the Taylor series representation
of a function centered at a point by differentiating the series term-by-term;
here, we will establish the uniqueness of the Laurent series representation by
integrating term-by-term. Let C be any simple closed contour in AR

r (z0) with
nC (z0) = 1, and note that C ⊂ AR1

r1 (z0) ⊂ AR
r (z0) for some proper subannulus

AR1
r1 (z0) ⊂ AR

r (z0). Also note that for any k ≥ 0,
∮

C

f (ζ)
(ζ − z0)k+1 dζ =

∮

C

∞∑

j=0

aj(ζ − z0)j−k−1 dζ +
∮

C

∞∑

j=1

bj

(ζ − z0)j+k+1 dζ

=
∞∑

j=0

∮

C

aj(ζ − z0)j−k−1 dζ +
∞∑

j=1

∮

C

bj

(ζ − z0)j+k+1 dζ (9.23)

= 2πi ak nC (z0)
= 2πi ak.

Note in (9.23) above that the integral of each summand corresponding to
aj for j 6= k, and for bj for j ≥ 1, vanishes due to the integrand having
an antiderivative within NR1(z0). Also, in integrating the singular part term-
by-term, we have applied Proposition 4.2. This shows that each ak in (9.22)
is uniquely determined by f and z0. A similar argument can be made for
the uniqueness of each bk for k ≥ 1 in (9.22) by considering the integral∮
C

f (ζ)
(ζ−z0)−k+1 dζ for any fixed k ≥ 1. We leave this to the reader.

I 9.44 Establish the uniqueness of the bk terms in the Laurent series representation
(9.22) by carrying out the integral

∮
C

f (ζ)
(ζ−z0)−k+1 dζ for any fixed k ≥ 1.

With these important facts about an existing Laurent series established, we
now state and prove Laurent’s theorem, the key result of this section. It is
a kind of sibling to Taylor’s theorem in complex function theory. It gives
conditions under which a function f : D → C is guaranteed a Laurent series
representation convergent on an annulus AR

r (z0) ⊂ D.

Theorem 4.3 (Laurent’s Theorem)
Let f : D → C be differentiable on the annulus AR

r (z0) = {z : r < |z − z0| < R} ⊂
D (where r ≥ 0 and R may be ∞). Then f (z) can be expressed uniquely by

f (z) =
∞∑

j=0

aj(z − z0)j +
∞∑

j=1

bj

(z − z0)j
,

on AR
r (z0). For any choice of simple closed contour C ⊂ AR

r (z0) with nC (z0) = 1,
the coefficients aj and bj are given by

aj =
1

2πi

∮

C

f (ζ)
(ζ − z0)j+1 dζ for j ≥ 0,
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and

bj =
1

2πi

∮

C

f (ζ)
(ζ − z0)−j+1 dζ for j ≥ 1.

PROOF As in the proof of Taylor’s theorem, we may assume that z0 = 0. Fix
z ∈ AR

r (0). Choose circles C1 and C2 in AR
r (0) such that both are centered at

0, with radii R1 and R2, respectively, satisfying r < R2 < |z| < R1 < R.

C2

C2

0

A
R1

R2 z

C3

Figure 9.5 The situation in the proof of Laurent’s theorem.

As indicated in Figure 9.5, choose a third circle C3, centered at z and having
radius R3, with R3 small enough that C3 is contained in AR

r (0) and does not
intersect C1 or C2. Then, since nC1 = nC3 + nC2 on

(
AR

r (0)
)C ∪ {z} (Why?),

we have
1

2πi

∮

C1

f (ζ)
ζ − z

dζ =
1

2πi

∮

C3

f (ζ)
ζ − z

dζ +
1

2πi

∮

C2

f (ζ)
ζ − z

dζ by Theorem 3.6, Chap. 8

= f (z) +
1

2πi

∮

C2

f (ζ)
ζ − z

dζ by Cauchy’s formula.

Solving for f (z) gives

f (z) =
1

2πi

∮

C1

f (ζ)
ζ − z

dζ − 1
2πi

∮

C2

f (ζ)
ζ − z

dζ

=
1

2πi

∮

C1

f (ζ)
ζ − z

dζ +
1

2πi

∮

C2

f (ζ)
z − ζ

dζ. (9.24)

We will show that the first integral on the right-hand side of (9.24) leads to
the analytic part of the Laurent series expansion for f (z), while the second
integral on the right-hand side leads to the singular part. The analysis of the
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first integral proceeds just as in the proof of Taylor’s theorem, that is,

1
2πi

∮

C1

f (ζ)
ζ − z

dζ =
N∑

j=0

zj 1
2πi

∮

C1

f (ζ)
ζj+1 dζ +

1
2πi

∮

C1

(
z

ζ

)N+1 f (ζ)
ζ − z

dζ.

In this case, however, we can no longer expect that 1
2πi

∮
C1

f (ζ)
ζj+1 dζ = f (j)(0)

j! ,
because f is not necessarily differentiable inside C1. Therefore, we define aj

by aj ≡ 1
2πi

∮
C1

f (ζ)
ζj+1 dζ, for whatever value this integral takes. This yields

1
2πi

∮

C1

f (ζ)
ζ − z

dζ =
N∑

j=0

ajz
j +

1
2πi

∮

C1

(
z

ζ

)N+1 f (ζ)
ζ − z

dζ,

and letting N →∞ as in the proof of Taylor’s theorem gives the analytic part,

1
2πi

∮

C1

f (ζ)
ζ − z

dζ =
∞∑

j=0

ajz
j .

To obtain the singular part, we apply a similar technique. Consider that for
ζ ∈ C2,

f (ζ)
z − ζ

=
f (ζ)
z

(
1

1− ζ
z

)
=

f (ζ)
z

(
1 +

ζ

z
+ · · · +

(ζ

z

)N
+

(ζ

z

)N+1 1

1− ζ
z

)

= f (ζ)

(
1
z

+
ζ

z2 + · · · +
ζN

zN+1 +
(ζ

z

)N+1 1
z − ζ

)

=
N+1∑

j=1

ζj−1

zj
f (ζ) +

(ζ

z

)N+1 f (ζ)
z − ζ

,

so that,

1
2πi

∮

C2

f (ζ)
z − ζ

dζ =
N+1∑

j=1

1
zj

(
1

2πi

∮

C2

ζj−1f (ζ) dζ

)
+

1
2πi

∮

C2

(ζ

z

)N+1f (ζ)
z − ζ

dζ.

In this case, define bj ≡ 1
2πi

∮
C2

ζj−1f (ζ) dζ, and take the limit as N → ∞ to
obtain

1
2πi

∮

C2

f (ζ)
z − ζ

dζ =
∞∑

j=1

bj

zj
.

Finally, consider aj = 1
2πi

∮
C1

f (ζ)
ζj+1 dζ. To show that the conclusion holds for

any simple closed contour C ⊂ AR
r (z0) with nC (z0) = 1, consider any such

C. Then nC = 1 on Nr(0), and also nC1 = nC on
(
AR

r (0)
)C , obtaining via

Theorem 3.6 from Chapter 8,

aj =
1

2πi

∮

C1

f (ζ)
ζj+1 dζ =

1
2πi

∮

C

f (ζ)
ζj+1 dζ.
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A similar argument works to show that bj = 1
2πi

∮
C ζj−1f (ζ) dζ. Finally, the

uniqueness of the Laurent series expansion was established prior to the state-
ment of the theorem. ¨

I 9.45 Answer the (Why?) question in the above proof. To do so, exploit the fact
that the contours are all circles, and consider the cases z, Int(Cr(0)), and Ext(CR(0))
separately.

In a certain sense, the concept of the Laurent series expansion generalizes
that of the Taylor series expansion. It allows for a series representation of
f : D → C in both negative and positive powers of (z − z0) in a region
that excludes points where f is not differentiable. In fact, if the function f
is differentiable on all of NR(z0) the Laurent series will reduce to the Taylor
series of the function centered at z0.

One practical use of a function’s Laurent series representation is the charac-
terization of that function’s singularities. We consider this topic next.

5 SINGULARITIES

5.1 Definitions

In our motivating example from the last section we discussed the function
f : C \ {2} → C given by f (z) = 1

z−2 . The point z0 = 2 is one where the
function f fails to be differentiable, and hence no Taylor series can be found
for f centered at z0 = 2. Yet, f is differentiable at points z arbitrarily near to
z0. Such a point z0 is called a singularity of the function f .

Definition 5.1 Suppose f : D → C is not differentiable at z0 ∈ C. If f is
differentiable at some point z in every deleted neighborhood N ′

r(z0), then z0
is called a singularity of f .

There are different types of singularities, and we characterize them now.
First, we distinguish between isolated and nonisolated singularities.

Definition 5.2 Suppose z0 ∈ C is a singularity of f : D → C. If f is differ-
entiable on some deleted neighborhood N ′

r(z0) ⊂ D centered at z0, then z0
is called an isolated singularity of f . Otherwise, z0 is called a nonisolated
singularity of f .

Example 5.3 The function f : C \ {0} → C given by f (z) = 1
z has an isolated

singularity at z0 = 0. The function Log : C \ {0} → C given by Log(z) =
ln |z|+ i Arg(z) has nonisolated singularities at every point z = x ∈ (−∞, 0].J
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I 9.46 Consider the function f : C → C given by f (z) =

{
z if Im(z) ≥ 0

−z if Im(z) < 0
.

Find the singularities of f and characterize them as isolated or nonisolated. What if
−z is replaced by z?

While we cannot find a Taylor series centered at a singularity of f , we can al-
ways find a Laurent series centered at an isolated singularity, convergent in an
annulus that omits that point. The Laurent series can then be used to further
characterize the isolated singularity. There are three subtypes to consider. In
the following definition, note that N ′

r(z0) is an annulus Ar
0(z0) centered at z0.

Definition 5.4 Let z0 be an isolated singularity of f : D → C, and suppose
f has Laurent series representation f (z) =

∑∞
j=0 aj(z − z0)j +

∑∞
j=1

bj

(z−z0)j on
N ′

r(z0) ⊂ D.

1. If bj = 0 for all j ≥ 1, then f is said to have a removable singularity
at z0.

2. If there exists N ∈ N such that bj = 0 for j > N but bN 6= 0, then f is
said to have a pole of order N at z0. In the special case where N = 1,
the pole is often referred to as a simple pole.

3. Otherwise f is said to have an essential singularity at z0.

It is not hard to show that f has an essential singularity at z0 if and only if
bj 6= 0 for infinitely many values of j ≥ 1 in its Laurent series expansion, that
is, if the Laurent series expansion’s singular part is an infinite series.

I 9.47 Prove the above claim.

According to this definition, if z0 is an isolated singularity of f : D → C one
can determine what type of singularity z0 is by finding the Laurent series
representation for f on an annulus AR

r (z0) centered at z0, and scrutinizing its
singular part. However, in practice it is often difficult to obtain the Laurent
series directly via Laurent’s theorem. Finding alternative means for making
this determination is therefore worthwhile, and we do so now. The key will
be to exploit the uniqueness of the Laurent series representation of a given
function on a particular annular region. The following example illustrates
the idea.

Example 5.5 Consider the function f : C \ {0} → C given by f (z) = 1
z3 ez .

We leave it to the reader to confirm that z0 = 0 is an isolated singularity. To
determine what type of isolated singularity z0 = 0 is we will find the Laurent
series representation of f on N ′

1(0). To this end, note that f has the form f (z) =
1
z3 f0(z) where the function f0 is differentiable onC. Therefore, we can expand
f0 in a Taylor series centered at z0 = 0, namely, f0(z) = ez =

∑∞
j=0

1
j!z

j . We
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then can write,

f (z) =
1
z3

∞∑

j=0

1
j!

zj =
∞∑

j=0

1
j!

zj−3 =
1
z3 +

1
z2 +

1
2!

1
z

+
1
3!

+
1
4!

z +
1
5!

z2 + · · ·

which is convergent on A∞0 (0). By the uniqueness property of Laurent series
representations, this must be the Laurent series centered at z0 = 0 for f . Since
b3 = 1, and bn = 0 for n ≥ 4, we see that f has a pole of order 3 at z0 = 0. J

I 9.48 Consider the function f : C \ {0} → C given by f (z) = sin z
z . Show that z0 = 0

is a removable singularity.

Example 5.6 Consider the function f : C \ {−1, 1} → C given by f (z) =
1

z2−1 . We will determine what kind of singularity z0 = 1 is. Note that f (z) =( 1
z−1

)( 1
z+1

)
, and

1
z + 1

=
1

2 + (z − 1)
=

1
2

(
1

1 + z−1
2

)

=
1
2

∞∑

j=0

(−1)j
(z − 1

2

)j
=
∞∑

j=0

(−1)j

2j+1 (z − 1)j ,

which converges for |z − 1| < 2. Overall then, we have

f (z) =
( 1

z − 1

)( 1
z + 1

)
=
∞∑

j=0

(−1)j

2j+1 (z − 1)j−1,

and this Laurent series converges on the annulus A2
0(1). From this we see that

z0 = 1 is a simple pole. J

I 9.49 For the function in the above example, show that z = −1 is also a simple pole.

I 9.50 For N ∈ N, what kind of singularity is z = 1 for the function f : C \ {1} → C
given by f (z) = 1

(z−1)N ?

Example 5.7 Consider the function f : C \ {0} → C given by f (z) = e1/z .
By Taylor’s theorem, we know that ez =

∑∞
j=0

1
j! zj , which converges for all

z ∈ C. Therefore the Laurent series for f centered at z0 = 0 is given by

f (z) = e1/z =
∞∑

j=0

1
j!

1
zj

,

which converges on A∞0 (0). Clearly z0 = 0 is not a removable singularity, nor
is it a pole of any order. Therefore, it is an essential singularity. J

Finally, we define what it means for a function to have a singularity at infin-
ity.
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Definition 5.8 Consider f : D → C. Let D∗ ≡ {
z ∈ D : 1

z ∈ D
}

, and define
the function g : D∗ → C by g(z) = 1

z . Then the function f ◦g : D∗ → C is given
by (f ◦ g)(z) = f

(
g(z)

)
= f

( 1
z

)
. We say that f has a singularity at infinity if

the function f ◦ g has a singularity at z0 = 0. The singularity at infinity for f
is characterized according to the singularity at z0 = 0 for f ◦ g.

Example 5.9 Consider the function f : C → C given by f (z) = z3. Then the
function g : C \ {0} → C given by g(z) = 1

z obtains f ◦ g : C \ {0} → C given
by (f ◦ g)(z) = f

( 1
z

)
= 1

z3 , which has a pole of order 3 at z0 = 0, and therefore
f has a pole of order 3 at infinity. J

I 9.51 Consider the function f : C \ {0} → C given by f (z) = e1/z . Show that the
associated singularity of f ◦g at z0 = 0 is removable, and hence that f has a removable
singularity at infinity.

I 9.52 Consider the function f : C \ {0} → C given by f (z) = sin z
z . Show that f has

an essential singularity at ∞.

5.2 Properties of Functions Near Singularities

We now prove some results particular to each type of isolated singularity,
and thereby reveal something about how a function behaves near each such
point.

Properties of Functions Near a Removable Singularity
Suppose z0 is a removable singularity of the function f : D → C. Then for
some N ′

r(z0) ⊂ D, the function f has Laurent series representation given by

f (z) =
∞∑

j=0

aj(z − z0)j on N ′
r(z0),

and we may extend f to z0 by defining F : D ∪ {z0} → C according to

F (z) =

{
f (z) if z ∈ D,
a0 if z = z0.

Clearly the function F is differentiable at z0. (Why?) This leads us to the fol-
lowing theorem.

Theorem 5.10 Let z0 be an isolated singularity of f : D → C.

a) The point z0 is a removable singularity of f if and only if f can be extended
to a function F : D ∪ {z0} → C that is differentiable at z0 and such that
F (z) = f (z) on D.



SINGULARITIES 497

b) The point z0 is a removable singularity of f if and only if there exists
N ′

r(z0) ⊂ D such that f is bounded on N ′
r(z0).

PROOF Half of the proof of part a) precedes the statement of the theorem,
and we leave the remaining half of the proof to the reader. To prove part b),
suppose f is differentiable and bounded on N ′

r(z0) ⊂ D, and let g : Nr(z0) →
C be given by

g(z) =

{
(z − z0)2f (z) for z 6= z0

0 for z = z0
.

Since f is differentiable on N ′
r(z0), the function g must be too. To see that g is

also differentiable at z0, consider

g′(z0) = lim
z→z0

g(z)
z − z0

= lim
z→z0

(z − z0)f (z) = 0,

where the last equality holds since f is assumed bounded on N ′
r(z0). There-

fore, g is differentiable on Nr(z0) and hence has Taylor series representation
there given by

g(z) =
∞∑

j=0

aj(z − z0)j =
∞∑

j=2

aj(z − z0)j .

From this, and the fact that f (z) = g(z)
(z−z0)2 on N ′

r(z0), we obtain

f (z) =
∞∑

j=2

aj(z − z0)j−2 =
∞∑

j=0

aj+2(z − z0)j on N ′
r(z0).

This last expression must be the Laurent series for f on N ′
r(z0), and hence z0

is a removable singularity of f . Now assume z0 is a removable singularity of
f . Then f has Laurent series representation of the form

f (z) =
∞∑

j=0

aj(z − z0)j on N ′
R(z0),

for some R > 0. Since this power series is defined and continuous (in fact,
it is differentiable) on NR(z0), it must be bounded on Nr(z0) for 0 < r < R.
Therefore f (z), which equals this power series on N ′

r(z0) ⊂ Nr(z0), must be
bounded on N ′

r(z0) ⊂ Nr(z0). ¨

I 9.53 Complete the proof of part a) of the above theorem.

I 9.54 Prove the following corollaries to the above theorem. Let z0 be an isolated
singularity of f : D → C.

a) Then z0 is a removable singularity if and only if lim
z→z0

f (z) exists.

b) Then z0 is a removable singularity if and only if lim
z→z0

(z − z0)f (z) = 0.

Use of the above theorem is illustrated in the following examples.
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Example 5.11 As we have already seen in exercise 9.48, the function f : C \
{0} → C given by f (z) = sin z

z has a removable singularity at z0 = 0. We
can extend f to z0 = 0 by assigning it the value a0 = 1 from its Laurent
series expansion centered at 0. The resulting function F : C → C given by

F (z) =

{
sin z

z if z 6= 0
1 if z = 0

is therefore entire. J

Example 5.12 Consider the function f : C \ {1} → C given by f (z) = z2−1
z−1 .

Since f (z) equals z + 1 on C \ {1}, it is clearly bounded on N ′
1(1). From the

above theorem, we conclude that z0 = 1 is a removable singularity of f . J

Properties of Functions Near an Essential Singularity
As established by the following theorem, near an essential singularity a func-
tion will take values that are arbitrarily close to any fixed value w0 ∈ C.

Theorem 5.13 (The Casorati-Weierstrass Theorem)
Let z0 ∈ C be an essential singularity of f : D → C. Then, for any w0 ∈ C and any
ε, r > 0, there exists z ∈ N ′

r(z0) such that |f (z)− w0| < ε.

PROOF 2 We use proof by contradiction. To this end, let z0 ∈ C be an essential
singularity of f : D → C and assume the negation of the conclusion. Then
there exists w0 ∈ C and ε, r > 0 such that |f (z) − w0| ≥ ε on N ′

r(z0). Since
z0 is an isolated singularity of f , there exists ρ > 0 such that f is differen-
tiable on N ′

ρ(z0). From this we may conclude that 1
f (z)−w0

is differentiable
and bounded on N ′

ρ(z0). By Theorem 5.10, z0 is a removable singularity of
1

f (z)−w0
and its Laurent series expansion has the form

1
f (z)− w0

=
∞∑

j=0

aj(z − z0)j on N ′
ρ(z0). (9.25)

Let m ≥ 0 be the smallest integer such that am 6= 0. Then (9.25) yields for
z ∈ N ′

ρ(z0),
1

f (z)− w0
=

∞∑

j=m

aj(z − z0)j

= (z − z0)m
∞∑

j=m

aj(z − z0)j−m

≡ (z − z0)mg(z) on N ′
ρ(z0),

where g(z) is differentiable on Nρ(z0) and g(z0) 6= 0. Also note that there exists
Ns(z0) ⊂ Nρ(z0) such that g(z) 6= 0 on Ns(z0). (Why?) From this, we can write

2We follow [Con78].



SINGULARITIES 499

f (z)− w0 =
1

(z − z0)m
1

g(z)
on N ′

s(z0), (9.26)

where 1
g(z) is differentiable on Ns(z0). Therefore, 1

g(z) has Taylor expansion

1
g(z)

=
∞∑

j=0

cj(z − z0)j on Ns(z0), with c0 6= 0, (Why?)

and (9.26) becomes

f (z)− w0 =
1

(z − z0)m
1

g(z)

=
1

(z − z0)m

∞∑

j=0

cj(z − z0)j

=
∞∑

j=0

cj(z − z0)j−m

=
c0

(z − z0)m
+

c1

(z − z0)m−1 + · · · +
cm−1

(z − z0)
+

∞∑

j=m

cj(z − z0)j−m.

Adding w0 to both sides of the above equality obtains the Laurent series rep-
resentation for f centered at z0 from which we can clearly see that z0 is a pole
of order m. This is a contradiction. ¨

I 9.55 Answer the two (Why?) questions in the above proof.

The Casorati-Weierstrass theorem is closely related to another result, often
referred to as Picard’s theorem, which we will not prove here. Picard’s the-
orem states that if f has an essential singularity at z0, then in any deleted
neighborhood of z0 the function f takes on every complex value with possi-
bly a single exception.

Properties of Functions Near a Pole
We now characterize the behavior of a function near a pole.

Theorem 5.14 Suppose f : D → C has an isolated singularity at z0. Then z0 is
a pole of order N ≥ 1 if and only if for some N ′

r(z0) ⊂ D there exists a function
f0 : Nr(z0) → C differentiable on Nr(z0) such that f0(z0) 6= 0 and f (z) = f0(z)

(z−z0)N

for all z ∈ N ′
r(z0).

PROOF Suppose a function f0 : Nr(z0) → C exists as described. Since f0 is
differentiable on Nr(z0), it has a convergent Taylor series

f0(z) =
∞∑

j=0

aj(z − z0)j on Nr(z0).
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Then
f (z) =

∞∑

j=0

aj(z − z0)j−N

is the Laurent series for f valid on Ar
0(z0). Since f0(0) = a0 6= 0, we see that

f has a pole of order N at z0. Now suppose z0 is a pole of order N ≥ 1
associated with the function f . Then there exists a deleted neighborhood
N ′

r(z0) ⊂ D on which f is differentiable and on which f has the Laurent
series representation given by

f (z) =
∞∑

j=0

aj(z − z0)j +
N∑

j=1

bj

(z − z0)j
, (9.27)

with bN 6= 0. Define f0 : Nr(z0) → C according to f0(z) = (z − z0)Nf (z). Then
clearly f0 has Laurent series representation on N ′

r(z0) given by

f0(z) = (z − z0)N
∞∑

j=0

aj(z − z0)j + (z − z0)N
N∑

j=1

bj

(z − z0)j
, (9.28)

=
∞∑

j=0

aj(z − z0)j+N +
N∑

j=1

bj(z − z0)N−j ,

=
∞∑

j=0

aj(z − z0)j+N + b1(z − z0)N−1 + b2(z − z0)N−2 + · · · + bN .

From this we see that f0 is, in fact, differentiable on Nr(z0), and that f0(z0) =
bN 6= 0. Comparing equations (9.27) and (9.28) shows that f (z) = f0(z)

(z−z0)N on
N ′

r(z0). ¨

Corollary 5.15 Suppose f : D → C has an isolated singularity at z0. Then z0 is a
pole if and only if lim

z→z0
|f (z)| = ∞.

PROOF Suppose z0 is a pole of order N ≥ 1 of f . Then there exists a neigh-
borhood Nr(z0) ⊂ D and a function f0 : Nr(z0) → C differentiable on Nr(z0)
such that f0(z0) 6= 0 and f (z) = f0(z)

(z−z0)N on N ′
r(z0). By continuity there exists

a neighborhood Ns(z0) ⊂ Nr(z0) such that |f0(z)| ≥ c > 0 on Ns(z0). There-
fore, |f (z)| ≥ c

|z−z0|N on N ′
s(z0), which implies lim

z→z0
|f (z)| = ∞. Conversely,

suppose lim
z→z0

|f (z)| = ∞. Since z0 is not a removable singularity (Why?), it

must either be a pole or an essential singularity. But lim
z→z0

|f (z)| = ∞ implies

that for any M ≥ 0 there is a δ > 0 such that |f (z)| ≥ M for |z − z0| < δ. By
the Casorati-Weierstrass theorem, z0 can’t be an essential singularity (Why?),
and so it must be a pole. ¨
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I 9.56 Answer the two (Why?) questions in the above proof.

Note the difference between the behavior of a function near a pole as op-
posed to its behavior near an essential singularity. While approaching a pole,
the magnitude of the function’s value grows without bound, whereas ap-
proaching an essential singularity causes the function’s value to go virtually
“all over the place“ infinitely often as z gets nearer to z0. The behavior near
an essential singularity is singular indeed!

The following theorem points to yet another way in which poles of a function
are “less strange“ than essential singularities. In fact, if a function f has a pole
of order N at z0, then near z0 the function f behaves like 1

(z−z0)N for the same
reason that near an isolated zero of order N a differentiable function behaves
like (z−z0)N . The theorem suggests even more, namely, that the reciprocal of
a function with an isolated zero of order N at z0 will be a function with a pole
of order N at that point. Also, a type of converse holds as well. The reciprocal
of a function f with a pole of order N at z0 is not quite a function with a zero
of order N at z0. But it can ultimately be made into one, as the proof shows.
Ultimately, the poles of f can be seen to be zeros of the reciprocal of f in a
certain sense.

Theorem 5.16

a) Suppose f : D → C is differentiable on D and has an isolated zero of order N at
z0. Then there exists N ′

r(z0) ⊂ D such that the function g : N ′
r(z0) → C given

by g(z) ≡ 1
f (z) has a pole of order N at z0.

b) Suppose f : D → C has a pole of order N at z0. Then there exists N ′
r(z0) ⊂ D

such that the function g : Nr(z0) → C given by g(z) ≡
{

1
f (z) for z ∈ N ′

r(z0)

0 for z = z0
has a zero of order N at z0.

PROOF To prove part a), note that there exists h : D → C differentiable on
D with h(z0) 6= 0 such that f (z) = (z − z0)Nh(z). By continuity of h there
exists Nr(z0) ⊂ D such that h(z) 6= 0 on Nr(z0). Therefore, the function g :
N ′

r(z0) → C given by g(z) = 1
f (z) = 1/h(z)

(z−z0)N has a pole of order N at z0.
To prove part b), we may assume there exists a function f0 : Ns(z0) → C
where Ns(z0) ⊂ D, f0 is differentiable on Ns(z0), and f0(z0) 6= 0 such that
f (z) = f0(z)

(z−z0)N on N ′
s(z0). Again, by continuity of f0 there exists Nr(z0) ⊂

Ns(z0) such that f0(z) 6= 0 on Nr(z0). Therefore, on N ′
r(z0) we have 1

f (z) =

(z − z0)N 1
f0(z) , which implies that z0 can be defined as a zero of order N for

1
f . In fact, defining g : Nr(z0) → C by g(z) =

{
1

f (z) for z ∈ N ′
r(z0)

0 for z = z0
obtains
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g(z) =

{
(z − z0)N 1

f0(z) for z ∈ N ′
r(z0)

0 for z = z0
. This function g has a zero of order

N at z0 as was to be shown. ¨

It should be noted that in the proof of part b) above, something a bit sub-
tle occurs. It is not quite true that the reciprocal of the function f having a
pole of order N at z0 is a function with a zero of order N at z0. This is be-
cause the original function f isn’t even defined at z0, and so the reciprocal
of f isn’t defined there either, initially. However, it turns out that z0 is a re-
movable singularity of the reciprocal of f . When assigned the value zero at
z0, the reciprocal of f becomes a differentiable function at z0 with a zero of
multiplicity N there. So while the domain of the function f excludes z0, we
can extend the domain of the function 1

f so as to include z0.

6 THE RESIDUE CALCULUS

6.1 Residues and the Residue Theorem

Let z0 be an isolated singularity of f : D → C and suppose f is differentiable
on the annulus AR

r (z0) ⊂ D. By Laurent’s theorem, f has a Laurent series
expansion on AR

r (z0),

f (z) =
∞∑

j=0

aj(z − z0)j +
∞∑

j=1

bj

(z − z0)j
.

The coefficient b1 in this expansion is especially significant.

Definition 6.1 Let z0 be an isolated singularity of the function f : D → C.
The coefficient b1 of the Laurent series representation of f on AR

r (z0) ⊂ D is
called the residue of f at z0 and is denoted by Res(f , z0).

In fact, if C ⊂ AR
r (z0) is a simple closed contour with nC (z0) = 1, Laurent’s

theorem tells us that
b1 =

1
2π i

∮

C

f (z) dz.

Rearranging this formula obtains
∮

C

f (z) dz = 2π i b1, (9.29)

and so the value of b1 is instrumental in evaluating complex integrals. If f is
differentiable for all z ∈ Int(C), and in particular at z0, Cauchy’s integral the-
orem implies that this integral will be zero and so b1 should be zero as well.
In fact, for such a function the whole singular part of the Laurent expansion
will vanish, leaving just the analytic part as the Taylor series expansion for
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f . But for a function f that is not differentiable at z0, we will find that for a
simple closed contour C with nC (z0) = 1 the only term in the Laurent series
expansion for f that contributes a nonzero value to the integral in (9.29) is
the b1 term, hence the name “residue.“ For these reasons, it is of particular
interest to be able to compute the residue b1 easily.

Example 6.2 Recall the function f : C \ {0} → C given by f (z) = 1
z3 ez dis-

cussed in Example 5.5 on page 494. We found the Laurent series of f centered
at z0 = 0 and convergent on A∞0 (0) to be

f (z) =
1
z3

∞∑

j=0

1
j!

zj =
∞∑

j=0

1
j!

zj−3 =
1
z3 +

1
z2 +

1
2!

1
z

+
1
3!

+
1
4!

z +
1
5!

z2 + · · · .

From this, we see that z0 = 0 is a pole of order 3, and Res(f , 0) = b1 = 1
2 . J

Note that in the above example we found the Laurent series expansion of the
function f (z) = 1

z3 f0(z) on A∞0 (0) by finding the Taylor series for the differen-
tiable function f0 on a neighborhood of z0 = 0, and then dividing that Taylor
series by z3. The residue b1 of the resulting Laurent series corresponded to

the second coefficient of the Taylor series of f0, that is, Res(f , 0) = f ′′0 (0)
2! = 1

2 .
This is so because the coefficient of z2 in the Taylor series of f0, when divided
by z3, becomes the coefficient of the 1

z term of the final Laurent series. This is
true more generally, and is stated in the following important result.

Theorem 6.3 Suppose f : D → C is differentiable on AR
r (z0) and let z0 be a pole

of order N of f where f0 : NR(z0) → C is the differentiable function on NR(z0)
such that f (z) = f0(z)

(z−z0)N , and f0(z0) 6= 0. Then

Res(f , z0) =
f

(N−1)
0 (z0)
(N − 1)!

.

Note that if N = 1, then Res(f , z0) = f0(z0). Also recall that if z0 is a pole of
order N for f , Theorem 5.14 on page 499 showed that we may choose f0 to
be given by f0(z) = (z − z0)Nf (z) in such a way that f0 is differentiable at z0.

I 9.57 Prove Theorem 6.3.

I 9.58 Find Res( sin z
z , 0).

I 9.59 Find the residues of the function f : C\{±1} → C given by f (z) = 1
z2−1 at

each of its singularities.

I 9.60 Prove the following: Suppose the functions f and g are differentiable at z0,
f (z0) 6= 0, g(z0) = 0, and g′(z0) 6= 0. Then the function given by f (z)

g(z) has a simple pole

at z0, and Res
(

f (z)
g(z) , z0

)
= f (z0)

g′(z0) .
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Example 6.4 Consider f : N ′
3
2
(1) → C given by f (z) = 1

z2−1 . We will use

equality (9.29) and Theorem 6.3 to evaluate
∮

C

dz

z2 − 1
, where C = C1(1).

Note that z0 = 1 is a simple pole of f , and that f0 : N 3
2
(1) → C given by

f0(z) = 1
z+1 is differentiable on N 3

2
(1) with f0(1) = 1

2 6= 0, and f (z) = f0(z)
z−1 . By

Theorem 6.3, Res(f , 1) = f0(1) = 1
2 , and therefore equality (9.29) yields

∮

C

dz

z2 − 1
= 2π i Res(f , 1) = π i. J

I 9.61 Evaluate
∮
C

dz
z2−1 where C = C1(−1).

I 9.62 Evaluate
∮
C

dz
z2−1 where C = [2i + 2, 2i− 2,−2i− 2,−2i + 2, 2i + 2].

The following important theorem generalizes the idea illustrated in the pre-
vious example. It highlights the great practicality in using residues to com-
pute complex integrals.

Theorem 6.5 (The Residue Theorem)
Let D̃ ⊂ C be open and connected and suppose {z1, . . . , zM} ⊂ D̃. Let D ≡ D̃ \
{z1, . . . , zM} and suppose f : D → C is differentiable on D. If C ⊂ D is any closed
contour such that nC (w) = 0 for all w ∈ D̃C , then,

∮

C
f (z)dz = 2πi

M∑

j=1

nC (zj)Res(f , zj).

PROOF Since f is differentiable on D ≡ D̃ \ {z1, . . . , zM}, we may choose
r > 0 small enough such that the deleted neighborhoods N ′

r(zj) ⊂ D\C for
j = 1, . . . , M are disjoint (see Figure 9.6). Also, choose circles Cj parametrized
by ζj : [0, 2π] → N ′

r(zj) with

ζj(t) = 1
2 r einjt, where nj ≡ nC (zj).

Then it follows that
(1) nCj

(zj) = nj = nC (zj),
(2) nC (w) = 0 =

∑M
j=1 nCj

(w) for w ∈ D̃C ,

which by Theorem 3.6 of Chapter 8 implies
∮

C
f (z)dz =

M∑

j=1

∮

Cj

f (z)dz.

But since
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r

Cj

zj

N
′

r(zj)

C

Figure 9.6 The situation in the proof of the residue theorem.

∮

Cj

f (z)dz = nj

∮

C r
2

(zj )
f (z)dz

= nj 2πi Res(f , zj)
= 2πi nC (zj) Res(f , zj),

the theorem follows. ¨

The above theorem can also be thought of as a generalized Cauchy’s integral
theorem in that, for a function f : D → C integrated along contour C ⊂ D, it
provides a formula for the value of the integral in the more complicated case
where there are finitely many isolated singularities in D \ C. When no such
singularities are present, it reduces to Cauchy’s integral theorem.

Example 6.6 We will evaluate the integral
∮
C

dz
z2−1 for the contour C shown

in Figure 9.7.

1−1

Figure 9.7 The contour C of Example 6.6.

Note that f : C \ {±1} → C given by f (z) = 1
z2−1 is differentiable on D ≡

C \ {±1}. Since z = ±1 6∈ C, and nC (1) = 1 and nC (−1) = 2 can be easily
verified using the visual inspection technique justified in the Appendix of
Chapter 8, we have

∮

C

dz

z2 − 1
= 2π i

[
nC (−1)Res

(
1

z2−1 ,−1
)

+ nC (1)Res
(

1
z2−1 , 1

)]

= 2π i
[
2
(− 1

2
)

+ 1
( 1

2
)]

= −πi. J
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z0

θ0

ε

α

Cε(α)

Figure 9.8 A fractional circular arc.

The Fractional Residue Theorem
Suppose z0 is a simple pole of the function f : D → C. Let θ0 be some fixed
angle, and suppse ε > 0. Let Cε(α) ≡ {z0+εeit : θ0 ≤ t ≤ θ0+α} be the circular
arc subtending α radians of the circle of radius ε centered at z0 as shown in
Figure 9.8. We will sometimes need to evaluate integrals of the form

lim
ε→0

( ∫

Cε(α)

f (z) dz

)
. (9.30)

In such cases, the following result will be useful.

Theorem 6.7 Suppose z0 is a simple pole of the function f : D → C, and let Cε(α)
be defined as above. Then,

lim
ε→0

( ∫

Cε(α)

f (z) dz

)
= iα Res(f , z0).

Note that if α = 2π this result is consistent with the residue theorem. And yet,
the proof of this result requires much less than that of the residue theorem.
PROOF 3 Since z0 is a simple pole, we know that on some neighborhood
Nr(z0) we have

f (z) =
b1

z − z0
+ a0 + a1(z − z0) + · · · =

b1

z − z0
+ g(z),

where g is differentiable on Nr(z0). If ε > 0 is small enough, then Cε(α) ⊂
Nr(z0), and ∫

Cε(α)

f (z) dz = b1

∫

Cε(α)

dz

z − z0
+

∫

Cε(α)

g(z) dz. (9.31)

Note that ∫

Cε(α)

dz

z − z0
=

∫ θ0+α

θ0

iεeit

εeit
dt = iα,

3We follow [MH98].
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and so all that remains is to show that the second integral on the right of
(9.31) vanishes as ε → 0. To establish this, note that g(z) must be bounded on
Cε(α), and so ∣∣∣∣

∫

Cε(α)

g(z) dz

∣∣∣∣ ≤ M LCε(α) for some M ≥ 0.

From this we obtain lim
ε→0

( ∫
Cε(α)

g(z) dz
)

= 0, and the theorem is proved. ¨

6.2 Applications to Real Improper Integrals

The residue theorem is an especially useful tool in evaluating certain real
improper integrals, as the following examples serve to illustrate.

Example 6.8 We begin by applying the technique to a real improper integral
whose value we already know, namely,

∫∞
−∞

dx
x2+1 = π. Traditionally this re-

sult is obtained by simply recognizing tan−1 x as the antiderivative to 1
x2+1 .

Here, we’ll begin by defining the contour C = {C1, C2}, where C1 = [−R, R]
for R > 1 and C2 is the semicircle going counterclockwise from (R, 0) to
(−R, 0) as illustrated in Figure 9.9.

C1

C2

R−R

i

Figure 9.9 The contour of Example 6.8.

We will evaluate
∮

C

dz

z2 + 1
=

∫

C1

dz

z2 + 1
+

∫

C2

dz

z2 + 1
.

By the residue theorem, we know
∮

C

dz

z2 + 1
= 2π iRes

( 1
z2 + 1

, i
)

.

To find Res
( 1

z2+1 , i
)
, we write

1
z2 + 1

=
1

z+i

z − i
,
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