
Exploring the Use of Concern Element Role
Information in Feature Location Evaluation

Emily Hill
Drew University

Madison, NJ, USA
emhill@drew.edu

David Shepherd
ABB Corporate Research

Raleigh, NC, USA
david.shepherd@us.abb.com

Lori Pollock
University of Delaware

Newark, DE, USA
pollock@cis.udel.edu

Abstract—Before making changes, programmers need to locate
and understand source code that corresponds to specific function-
ality, i.e., perform concern or feature location. Numerous concern
and feature location techniques have been proposed, but to the
best of our knowledge, no existing techniques or evaluations
report information on what role a code element plays in the
larger concern. In this paper, we report on two case studies that
investigate two hypotheses on how evaluation studies of concern
location techniques can be strengthened by utilizing concern
role information: (1) by increasing agreement among human
annotators for gold set establishment and (2) by providing richer
information about the elements ranked as relevant by concern
location techniques, which could help further improve the tools.

We conducted a case study of 6 Java developers annotating 3
concerns with role information. When the developers understood
the task description, pairwise agreement increased by 20%, 25%,
and 135% for the 3 concerns over a prior concern location study
without role information. Our findings also suggest that there
may be core element roles that need to be annotated by humans,
but that the remaining roles may be automatically derived,
which could facilitate more reliable concern location benchmarks
in the future. We also conducted an exploratory study of the
element roles represented in results returned by a state of the
art feature location tool. The results of these two studies suggest
that integrating concern element role information into evaluations
can help to strengthen both the gold set establishment and the
analysis of results returned by various tools.

I. INTRODUCTION

During software maintenance, programmers spend consid-
erable time locating and understanding code related to the
maintenance task. Numerous feature and concern location
techniques have been developed to help ease this developer
burden [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
Although the notions of feature and concern are often viewed
as synonymous, in this work, we use the broader definition
of a concern [12]: “anything that stakeholders of a software
project may want to consider as a conceptual unit.” These
include features, nonfunctional requirements, design idioms
and implementation mechanisms such as logging and caching.

The variety of feature location techniques has motivated re-
search to better support evaluation and comparison [13], [14].
Existing evaluations only consider an element’s relevance, and
not what role it plays in the concern. However, some elements
play a key role in implementing the concern’s functionality,
whereas others are important in understanding how the concern
interacts with its surrounding source code context.

In a previous short paper [15], we proposed the notion of
differentiating program elements of a concern by the roles that
they play with respect to the concern’s implementation. We
investigated the feasibility of such roles by manually analyzing
a small set of concerns, focusing on concerns that can be
described by a precise verb phrase (VP), which not only
includes a verb and direct object, but also an indirect object
(e.g., not just “add a song”, but “add a song to a playlist”).
We proposed a classification of roles that program elements
play in a concern and manually examined whether individual
annotators in a gold set for concern location agree on certain
roles more than others. Our results indicated that human
agreement aligns with some of the roles that we proposed.

Based on the initial results, we believe that evaluation
studies of concern location techniques can be strengthened
in two ways by utilizing concern role information: (1) by
increasing agreement among human annotators for gold set
establishment and (2) by providing richer information about
the elements identified and ranked according to relevance
by concern location techniques, which could help to direct
improvements to the tools in the future.

This paper provides significant contributions beyond our
preliminary work by:

1) conducting an in-depth case study focused on whether
knowledge of concern element role information in-
creases annotator agreement, and

2) exploring whether annotating feature location results
with concern element roles reveals new insights to
further improve feature location tools.

We refined the initial concern element roles through the
authors’ manually analyzing 8 additional concerns. This paper
also advances the understanding of concerns beyond results
from prior concern annotation studies. Robillard, et al. [16]
investigated the agreement among developers, while Murphy,
et al. [17] compared the opinions of a newcomer with the
code’s author. Neither study investigated the nature of a
concern’s elements or differentiated among the different roles
that program elements might play in comprehension.

II. MOTIVATION

In this section, we describe our insights from prior
work [15], [16] as well as give an example concern showing
that not all concern elements are included for the same reason.

D
A

D
A A

D
A
A
A

D
D

A
C

A

A
C
A
C
C
T

T

D
A
T

MP, DP
MP, DP

MP

CMP

CMP

DP

C
MP

C
MP

C
C

DP
DP

Fig. 1: Program elements and roles for the example “add new auction to local system” concern. Each element is annotated with its role in
red. Edges indicate structural relationships such as calls (solid-head arrows) and inheritance (open-head arrows).

A. Insights from Previous Studies

A prior empirical study of concern location collected and
analyzed 3 independent annotations for 16 search tasks, anno-
tated by 23 distinct developers [16]. From this work, we make
the following observations that motivate the current work.

Low average agreement. The average pairwise agreement
of any two annotators was very low—just 34%, and the range
was 0–82%. Because this experiment was conducted with
experienced, professional developers, we do not believe that
agreement would significantly increase if this experiment were
repeated with a different set of developers. We also do not
believe agreement would significantly improve this experiment
were repeated with a different set of concerns, since the
experiment involved 16 concerns from 4 different systems.

Low agreement due to loose definition of concern.
One main source of disagreement appeared to be subjectivity
surrounding what is a concern. Some subjects considered
only methods that actually modified the target data structures,
whereas other subjects annotated UI elements, such as a
button that was pushed to trigger the concern. We believe
that we can reduce this source of disagreement by defining
roles of individual concern elements and educating annotators
about the roles. In prior work, we studied a subset of these
concerns [16] and found that an initial version of our roles
helped to explain annotator disagreement [15].

Low agreement due to not following structural paths.
Another source of disagreement involved control flow “is-
lands”, where the related concern elements were either not
connected by control flow or the connections were difficult to
recognize, such as complex data flow or interwoven library
code. We observed that when annotators found one item in a
control flow group, they would typically find others, but might
not make the jump to discover other related elements if the
structural connections were not as obvious or well-supported
by the IDE (e.g., through extremely long control flow paths or
complex data flow relationships). We noticed that these islands
often coalesced at the beginning of a concern (i.e., where it
was triggered) and at the end (i.e., where the main action work

was done). We believe these roles will naturally lead concern
annotators to include both the beginning and ending elements
of a concern, rather than omitting one.

B. Example Annotated Concern
We use a concern in jBidWatcher to demonstrate how

program elements take on different roles. jBidWatcher is an
auction bidding, sniping, and tracking tool for online auction
sites such as eBay or Yahoo. It includes a unique sniping
feature that allows the user to place a bid in the closing seconds
of an auction. Before a user can bid on an auction, they must
add the auction to the user view and system data structures.
We define the verb phrase (VP) for this concern to be “add
new auction to local system.” Figure 1 shows the methods and
fields that implement this concern.

Nodes are added to the concern for a number of reasons.
Some methods trigger the execution of the concern, such as the
“do” methods in JBidMouse or the messageAction method
in JBWDropHandler. Some methods are relatively generic,
such as MessageQueue and MQFactory, which process
all user-initiated actions. Although generic, these methods
communicate (or connect) information from the triggers to
methods that implement the concern’s actions and are critical
to comprehending the control and data flow within the concern.

The action of adding an auction culminates in updating sev-
eral internal data structures: the set of auction entries managed
by the system (FilterManager. allOrderedAuctionEntries),
the table of auctions displayed by the user interface
(Auctions. tSort), and the list of auctions managed by the
internal auction server (AuctionServer. aucList). These are
some of the data or results of the concern.

Although creating a new AuctionEntry object is not ob-
viously part of the add auction concern, since it can be
precisely described by its own VP, creating a new auction
object culminates in adding that AuctionInfo to the system
with the addAuction methods in class AuctionServer, and
thus is still relevant to adding an auction.

This example demonstrates that a program element may
be included as part of a concern for different reasons, and

Fig. 2: Example action node that uses an API library call to imple-
ment the VP, “add auction,” despite having a seemingly unrelated
method name.

that implementing the main action is only one reason. In
Figure 1, some concern elements are included because they
trigger, or initiate, the concern action (‘T’), whereas other
elements execute the action of adding an auction by creating
AuctionEntry objects and adding them to the internal data
structures of the system (indicated by ‘A’). The data structures
and fields that provide input data to the concern’s action or
are updated as a result of the action are indicated by ‘D’, with
connecting elements that communicate between different parts
of the concern labelled ‘C’.

III. CONCERN ELEMENT ROLES

We are targeting concerns that can be precisely described
by a verb phrase (VP) that includes a verb, direct object, and
supporting indirect objects or modifying phrases. The action,
or verb, is key to determining whether program elements (i.e.,
methods and fields) should be included in the concern. Direct
objects are useful in identifying fields, since field names do
not typically refer to actions or verbs. The indirect objects or
modifying phrases help differentiate nodes to be included in
the concern by indicating concern boundaries and helping to
determine when one concern has become another.

Even if a concern can be precisely described by a VP,
sometimes the concern’s implementation does not use the VP’s
exact words. For example, the action delete might be imple-
mented as the synonym remove, and the concept of adding
may include creating a new item. An objective definition of
concern roles should not be so fragile as to require exact word
matching in the source code. In the definitions below, we use
the concept of similarity, where two words or phrases are
semantically equivalent (i.e., synonyms).

To develop our concern element role definitions, the first
two authors manually located 12 concerns described by well-
defined VPs in 3 open source Java programs [16]. The first
4 concerns informed our initial role definitions of action,
trigger, result and connector nodes [15]. We further refined
these definitions by annotating 8 additional concerns. For each
concern, we agreed on a descriptive VP before independently
locating the concern and annotating role information. We then
discussed our annotations until we reached a consensus both
in what elements implement the concern and their roles. We
then briefly justified the element’s role and it’s relevance to
the concern. After locating and annotating these 8 concerns,

Fig. 4: Example trigger node for the “get thumbnail” concern that
is not directly triggered by the user through the UI, but indirectly
triggered through adding or loading an auction.

we reviewed our definitions and carefully analyzed all our
annotations, using the justifications to help ensure our defini-
tions were consistent. From this research process, we defined
5 distinct roles of nodes in a structural representation of a
concern: action, trigger, initializer, data, and connector.

Action Nodes (A): Any method that directly implements
the concern’s verb phrase. The name need not explicitly refer
to the VP, since method naming can be arbitrary (especially
for overridden methods) or buggy [18]. Action nodes can also
serve as trigger points (see trigger nodes, below).

In practice, action nodes can implement the VP in multiple
ways. For instance, a VP can be implemented by directly
manipulating primitive types (e.g., for the phrase “remove
person” a method could set an array value to null to remove
that person). Alternatively, a method can call external libraries
to implement the VP (e.g., for the phrase “connect to database”
an action node could call the connect method in a database
library). Finally, a method can call other methods within
the same system (e.g., for the phrase “open file” calling
FileOpener.open). In this situation, the calling node is only
considered an action node if the call and surrounding code
are the major theme of the method (i.e., not just a side effect
supporting the method’s unrelated main action).

In Figure 1, most of the action nodes are easily determined
from their names, which have a strong relationship to the
VP, “add new auction to local system”. The exception is
registerAuction in AuctionServer, which is responsible for
updating the list of auctions managed by the internal auction
server (aucList), and very clearly contains the phrase “add
auction” in its method body (see Figure 2).

Trigger Nodes (T): Any method or field that triggers
the execution of an action node, either directly or through
connector nodes, but does not implement the concern’s VP.
Trigger nodes usually contain a reference to the concern’s VP,
and serve as an entry point into the concern from outside the
concern (see Figure 3). If a node is a trigger for the concern but
also implements the concern’s VP, then the node is considered
to be an action node.

Trigger nodes are typically manifested in two ways de-
pending on whether the trigger is part of the user interface
(UI). First, methods that respond to UI events, such as button
presses, are often trigger nodes as they typically send a
message to a command queue or signal an event listener to

Fig. 3: Example trigger node for many user-triggered events in jBidWatcher, including adding and deleting an auction.

execute an action, yet do not implement the action themselves.
Similarly, for non-UI features, the main public methods for an
API often serve as a trigger point. When outside clients call
this API, a command queue is often notified, but the trigger
method does not implement the concern itself. Another non-
UI example includes enqueuing a message on an event queue,
to be handled elsewhere in the system (see Figure 4).

Initializer Nodes (I): Any method or field that initiates a
relationship between a trigger node and an action node. Unlike
the other nodes, initializers are executed before the concern is
executed, rather than after the concern is triggered. This is
most often manifested in methods that register UI listeners
(e.g., connecting a UI button to an action handler), command
queue listeners (e.g., listening for an event), or initializing an
event message to be sent when the concern is triggered.

Data Nodes (D): Data is passed into, within, and out of a
concern using a number of mechanisms. Data nodes include
any fields and simple get or set methods involved with passing
information into, within, or out of a concern.

We have identified 4 broad categories of data nodes that
may be used to implement a concern. Result nodes include
any field that has a similarity to the concern’s VP that is
altered by an action method node as a result of an action
related to the VP. In contrast, Exception result nodes can occur
when an action ends with an unintended result, such as an
exception being thrown. Input nodes include any field that
has a similarity to the concern’s VP that is used as input to
an action, either directly or through a series of trigger and
connector nodes. Finally, some fields are used as both data
input and results within a concern, and may be changed many
times throughout a concern’s execution. Typically, such fields
are flags that indicate different stages of a concern’s execution.
Flags typically have similarity to the concern’s VP.

Connector Nodes (C): Any method or field that structurally
connects two concern nodes in the program structure graph,
and is used to pass data between the two identified concern
nodes. Connector nodes most often connect triggers to actions.
They are often manifested as pure message passers (MP) by
simply passing data or messages within the concern, and/or as
data preparers (DP) by modifying and preparing data for use
in subsequent action methods. Connectors can include generic
methods that are shared by many concerns in a system. In this
case, the connector’s parameters will have a strong relationship
to the verb or direct object of the concern’s VP. Otherwise,
generic methods are typically not included.

In Figure 1, methods that transform the data or create
objects from the data to be added from the add auction request
trigger are considered to be DP connectors, such as pre-

pareAuctionEntry, newAuctionEntry, and AuctionEntry. In
contrast, methods that simply pass along auction data without
modifying it or indicate that the add auction event has occurred
are considered to be MP connectors (e.g., ADD AUCTION,
messageAction, getConcrete, and enqueue). Some meth-
ods are responsible for transforming the data as well as passing
along a message, and are labelled as DP and MP connectors.

IV. CASE STUDY: ANNOTATOR AGREEMENT

We hypothesize that knowledge of the roles defined in
the prior section will increase agreement among developers
annotating concerns, which will help both evaluation of con-
cern location techniques and provide information for deeper
understanding of concerns during software maintenance tasks.
Our study investigates the following research questions:

RQ1 Does knowledge of roles increase annotator agree-
ment?

RQ2 How clear are the role definitions?
RQ3 Do concerns share similar distribution of roles?

To investigate the above research questions, we compare with
concerns annotations from a prior study where each concern
was annotated by 3 different developers [16]. Because concern
location is a difficult and time-intensive task, especially on an
unfamiliar code base, we chose a subset of the concerns to be
annotated by a new set of developers with knowledge of roles.

A. Study Design

From our experience in locating and annotating roles for
12 concerns, we appreciate how difficult and time consum-
ing annotating concerns can be. We attempted to streamline
the process and reduce developer annotation effort wherever
possible. In the prior study [16], annotators were given no
training and asked to spend 20-30 minutes locating a single
concern. In contrast, for the current study, we gave an hour
long training session and asked participants not to exceed 5.5
hours in locating and annotating the 3 concerns. Thus, we
allowed participants close to two hours to locate and annotate
each concern, rather than 30 minutes.

Subject Concerns: From the set of previously annotated
concerns, we randomly selected three concerns from the same
program to limit the amount of initial setup work for the
participants. The tasks needed strong verb phrases, and the
prior version of the program needed to be executable (e.g.,
jBidWatcher is dependent on an external web site, eBay, and
prior versions do not currently execute as intended). This
left us with two possible programs: jajuk and freemind. We
randomly chose jajuk and 3 of its 4 concerns.

Number of Software Developers in Study

No. Years Programming Industry Perform Perform Maintenance FrequencyExperience Experience Maintenance on Code Not Authored
10+ years 3 1 3 0 Daily
5-9 years 3 3 2 1 Weekly
1-4 years 0 0 1 4 Monthly
< 1 year 0 2 0 1 Yearly

TABLE I: Participant Developer Characteristics: number of years of experience (left) and maintenance frequency (right)

The randomly selected program, jajuk, is an open source
Java music organizer similar to iTunes. The three randomly
selected concerns were given in the same order to all par-
ticipants: sorting a collection by genre (C8), adding a song
to a playlist by dragging and dropping (C7), and playing a
song from the Logical Perspective pane (C5). The program and
concern descriptions given to participants were not changed in
any way from the original study [16].

Participants: Six participants with extensive Java program-
ming and/or industry experience were recruited through author
contacts. Table I shows characteristics of our study partici-
pants. The distribution of years of programming and industry
experience for each subject is displayed on the left of the table,
and the frequency they perform maintenance tasks to the right.

Procedure: All six participants attended a 1-hour webinar
tutorial on how to locate concerns and annotate the elements
with roles. All of the definitions were accompanied by exam-
ples taken from jBidWatcher, which had no relation to jajuk,
the program used in the study. Participants were encouraged
to ask questions during the webinar and when annotating.

In addition to the webinar, participants were given the
slides for the webinar, a written description of the roles
similar to Section III, the task descriptions, and a spreadsheet
template to record their annotations. The jajuk source code was
distributed as an exported Eclipse project, and Eclipse was the
recommended IDE (although its use was not required). After
the webinar, participants were asked not to exceed 5.5 hours
in locating and annotating the 3 concerns. At the conclusion of
the study, participants were asked to complete an exit survey
that collected information about the difficulty of the 3 tasks,
the clarity of the role definitions, as well as the demographic
information depicted in Table I.

The experimental materials used in the study are available
at http://lee.cs.montclair.edu/∼hillem/cer/, including a video
recording of the webinar.

Measures: To investigate the three research questions, we
employed a number of measures. For analyzing agreement
among annotators, we compared pairs of concern annotations
using Jaccard’s coefficient for comparing two sets. Given two
sets of program elements A and B:

agreement =
|A ∩B|
|A ∪B|

We apply two sample t-tests to determine significant dif-
ferences between the pairwise agreement of no roles and
roles. When subsets used in a comparison are not normally

distributed, or the variances are non-homogenous, we apply
the non-parametric Mann-Whitney U-test instead.

While percent agreement gives an estimated agreement
overlap between any two participants, it does not account for
spurious agreement due to chance. Reliability statistics such
as kappa or alpha are commonly used in the content analysis
community to compliment percent agreement [19], [20]. We
use Fleiss’s kappa in our analysis, rather than the more
traditional Cohen, since we have more than two annotators. We
restrict the set of annotations to those program elements that
were annotated by at least one subject in either study. Because
our second study with role training has more annotators than
the original study, it is invalid to use an alpha test such as
Cronbach or Krippendorff, since increases in alpha are more
likely to occur with more participants.

To determine how clear the role definitions are, we analyzed
the number of annotation pairs categorized by role. We assume
that if pairs of participants tended to use the same role when
including an element in a concern, then the role definition is
clear. If pairs of participants both include the same element
with differing roles, we assume the definitions to be unclear.
In addition, we used data from the exit survey, which collected
responses on a 7-point Likert scale, to determine the relative
clarity of the definitions for particular roles. In analyzing
the relative distribution of roles across multiple concerns,
independent of concern size, we calculated the percent of
annotated elements categorized by role for each concern.

Statistical Power and Outliers: Although a sample size of
9 participants may appear small for statistical testing, we are
not performing any statistical analysis on each subject’s data
as a whole; rather, we are analyzing agreement among pairs
of participants for each concern (40 with roles, 9 without), as
well as the number of annotations (308 total) and the number
of annotated program elements (149). Thus, our data sample
sizes are sufficiently large to perform statistical analysis.

There was one annotation for which a participant located
a different concern from all the 8 other participants across
both studies. Instead of locating the code to add a song to
the playlist from the logical tree view (C7), the participant
located the code for adding a song to the playlist from the table
view. While the VP is similar, these concerns execute different
code, only overlapping in two methods. The remaining concern
elements were not present in any of the other 8 annotations.
Because this subject clearly misunderstood the task descrip-
tion, we have removed this particular concern annotation from
our results and analysis.

All elements Actions & Triggers (A+T) only

Concern Description Agreement Agreement Percent Agreement Agreement Percent
w/o Roles w/Roles Increase w/o Roles w/Roles Increase

C8 Sort collection by genre 27.64 33.18 20.04% 44.44 52.35 17.80%
C7 Add song to playlist by drag and drop 18.29 22.85 24.93% 46.19 45.21 -2.12%
C5 Play song in Logical Perspective 12.96 30.44 134.88% 33.33 61.57 84.73%

TABLE II: Pairwise agreement without (w/o) and with (w/) foreknowledge of roles and the percent increase.

(a) Agreement overall (b) C8: Sort by genre (c) C7: Add to playlist (d) C5: Play song

Fig. 5: Percent of pairwise agreement between no knowledge of roles (no roles), knowledge of roles (roles), and the subset of action and
trigger roles only (A+T only). The box plots show the median, quartiles, and mean (+).

C8 C7 C5
None Roles None Roles None Roles

All 0.223∗ 0.207∗ 0.102 0.16∗ -0.0002 0.274∗
A+T only 0.462∗ 0.233∗ 0.459∗ 0.173∗ 0.192 0.354∗

TABLE III: Fleiss’s kappa reliability measure without (None) and
with foreknowledge of roles (Roles) for each concern. Starred∗ values
are statistically significant (p < 0.05).

B. Results and Analysis

In all, the 6 participants annotated 209 elements with
roles, along with 99 annotations from the 3 participants from
the prior study without roles. The most common annotation
was connectors (86), followed by actions (44), data (41),
triggers (25), and initializers (13). Two of the six participants
never annotated an element as an initializer; each participant
annotated at least one element with the remaining roles.

RQ1: Does knowledge of roles increase agreement?: To
analyze agreement among annotators, we compared pairs of
concern annotations using Jaccard’s coefficient for comparing
two sets (see Section IV-A). Table II presents an overview of
the pairwise agreement of the three concerns annotated without
roles (from the original study [16]) and with roles (our current
study). Figure 5 presents this same data as a box plot where the
thick horizontal line represents the median, the plus represents
the mean, and the box indicates the interquartile range (i.e.,
the difference between the first and third quartiles). The

whiskers extend to the maximum and minimum values of the
range, with outliers indicated by ◦. Figure 5 includes pairwise
agreement for the A+T only subset of program elements.
Based on participant feedback that action and trigger roles
were important to understanding a concern, we measured the
agreement for the subset where at least one participant marked
an element as an action or a trigger. Agreement improves both
for the original data set (no roles) and the current data set
(roles) when only analyzing actions and triggers.

To verify these conclusions, we apply the two sample t-
test and the non-parametric U-test to determine significant
differences between the pairwise agreement with and without
knowledge of roles. Knowledge of roles has significantly
higher agreement than no roles (t-test, p < 0.05). When only
considering elements categorized as actions or triggers by at
least one participant, the action and trigger subset with knowl-
edge of roles (roles A+T only) significantly outperforms
roles when all elements are considered (U-test, p < 0.05).
No other comparisons were statistically significant.

We observe similar trends when considering inter-annotator
reliability. Table III shows Fleiss’s kappa for the three con-
cerns. For concerns C7 and C5, reliability increases with
knowledge of roles. Furthermore, restricting the set of annota-
tions to just potential actions and triggers uniformly increases
reliability. Because the agreement when considering only
actions and triggers increased significantly, both statistically

 0

 10

 20

 30

 40

 50

 60

 70

Connector Action Trigger Data Initializer

N
um

be
r o

f a
nn

ot
at

io
n

pa
irs

Connector
Action

Trigger
Initializer

Data

(a) All pairs

 0

 10

 20

 30

 40

 50

 60

 70

Connector Action Trigger Data Initializer

N
um

be
r o

f a
nn

ot
at

io
n

pa
irs

Connector
Action

Trigger
Initializer

Data

(b) Only pairs that mismatch

Fig. 6: Number of annotation pairs categorized by role. Chart (b) is a subset of the data presented in chart (a).

and practically, we believe these two roles are particularly
important in understanding a concern.

RQ2: How clear are the role definitions?: To investigate
whether the roles are clearly defined, we analyze pairwise
agreement of role annotations. For every pair of annotations
in the study, we take the intersection of concern elements
and count the number of role annotation pairs (action-action,
action-trigger, action-connector, etc.). We hypothesize that if
both participants mark a program element with the same role,
then that particular role’s definition is clear. Concretely, we
measure the number of matching roles and the number of
mismatching roles for each pairwise comparison across all
participants. We count a match if both participants include
the program element and mark it as the same role (e.g., P1
action, P2 action), and a mismatch if they both include the
same program element but mark it a different role (e.g., P1
action, P2 trigger).

Figure 6(a) shows the number of annotation pairs for each
role, categorized by role. For example, consider the ‘Action’
bar. Given the key in the top right, we can see that 26 actions
were also categorized as connectors, 29 elements were cate-
gorized as action by at least 2 participants, and 2 actions were
also categorized as triggers. From this information, we can
determine the percent of matching annotation pairs (action-
action, trigger-trigger, etc) and non-matching pairs (action-
trigger, action-connector, etc). Notice that connectors, shown
in the first column, appear as part of 31 matching pairs but
also in 41 non-matching pairs, giving them the highest percent
of mismatches (57%). We also see that actions, triggers, and
data have lower mismatch rates of 49%, 34%, and 50%. Note
that data also has a mismatch rate of 57%, but that this rate
is dominated by connectors.

Figure 6(b) shows only the subset of mismatching role
annotation pairs, with matching pairs removed. Notice how
connectors (dark blue) dominate the mismatch counts for
action, trigger, data, and initializer. The number of mismatches
decreases significantly when connectors are not considered,
reducing to 7%, 21%, 35%, and 0%, respectively. When
mismatches caused by connectors are disregarded, participants

Survey Question µ ±σ
How clear were the study instructions? 6.17 0.75
How helpful was the webinar [training]? 6.00 0.63
How clear was the description of:
concern element roles? 4.67 1.03
action nodes? 5.67 1.03
trigger nodes? 5.83 0.98
initializer nodes? 5.33 1.21
data nodes? 5.00 1.67
connector nodes? 3.83 1.47
How would you rate the difficulty of:
Task 1 [C8]? 4.50 1.38
Task 2 [C7]? 4.33 1.21
Task 3 [C5]? 4.33 1.37

TABLE IV: Mean (µ) and standard deviation (±σ) for survey
responses on a scale of 1 to 7, where 1 is low (unclear, unhelpful,
or easy) and 7 is high (clear, helpful, or difficult).

most often agree on actions and triggers, which likely indicates
that these role definitions are clear. Note that both data and
initializers have low mismatch rates when disregarding con-
nectors, but have insufficient data to draw further conclusions.

We believe connectors are most often involved in a mis-
match because the definition for connectors is not as clear as
that of the other roles. This hypothesis is further supported by
the participant exit survey data. Table IV shows the results of
the closed-form questions in the survey, which were evaluated
on a 7-point Likert scale. This survey investigated the clarity of
each role’s definition as understood by the participants. Notice
that when asked, “How clear was the description of connector
nodes?” participants responded with the lowest mean score
of the entire survey, at 3.83, whereas the average of the
other roles’ scores was 5.46. Participants clearly had trouble
understanding the connector role definition.

We also asked participants open-ended questions about how
the concern element role definitions could be improved. Four
of the participants wanted a more precise definition of connec-
tor nodes. One participant wanted connectors better differenti-
ated from action nodes, while another wanted connectors to be
differentiated from triggers, and a third wanted better examples
to differentiate between MP and DP connectors. These answers

C8: Sort by genre C7: Add to playlistC5: Play song

Connector

Action

Trigger

Initializer

Data
C8: Sort by genre C7: Add to playlistC5: Play song

Connector

Action

Trigger

Initializer

Data

Fig. 7: Percent of annotated elements by role for each concern

reinforce our quantitative findings regarding the clarity of the
connector role definition.

RQ3: Do concerns share similar distribution of roles?: The
final research question investigates whether the three concerns
in the study share similar role distributions. In contrast to
RQ2, where we counted pairs of role annotation categories,
to answer this question, we counted the raw number of
role annotations per category for each concern, shown in
Figure 7. Note that we counted the annotations irrespective of
agreement. For example, if the same element was annotated as
an action, trigger, and initializer by different subjects, it will
count toward the pie slices for all three of those roles. Figure 7
shows that the distribution of roles is relatively consistent,
with actions representing 21% of the annotations on average,
connectors 40%, triggers 13%, data 20%, and initializers 7%.

Notice in Figure 7 that both C7 and C8 show a similar
role distribution. The largest variance is the balance between
actions and triggers. In contrast to the other two concerns,
C8 has a higher percentage of triggers due to its trigger
implementation. While C7 has a single triggering user action
(i.e., dragging a song to the playlist), C8 has three different
triggering actions. Varying number of triggers is exactly the
kind of variation we expect across concerns. It is often the
case that the same concern can be triggered through many
different UI elements (e.g., a menu item and a button).

Notice that C5, while otherwise similar in distribution to C8
and C7, has a larger percentage of connectors. In many cases,
we observe that much of the connector code flows through
libraries, which are not included in our concern annotations.
However, C5 involved a FIFO class which processed play
commands, and thus many of C5’s connectors were non-library
elements, inflating its connector percentage.

We hypothesize that with a large enough sample of con-
cerns, we would observe a role annotation distribution close
to the averages seen across Figure 7. Despite some minor
variations, the distributions of roles for these three concerns
appear relatively consistent. We plan to confirm this hypothesis
in future work by investigating if this trend holds true across
multiple Java programs.

C. Threats to Validity

In this study, we compared pairwise agreement and reliabil-
ity results from the current study using knowledge of roles and
training, and a prior study [16]. In the prior study, annotators
were asked to spend 20-30 minutes locating a single concern,
and no information about roles was provided. In contrast,

for the current study, we gave an hour long training session
on role definitions and asked participants not to exceed 5.5
hours in locating and annotating the 3 concerns. Thus, we
allowed participants close to two hours to locate and annotate
each concern, rather than 30 minutes, to accommodate for the
additional role information used during annotations.

The challenging and time consuming nature of the task
makes it difficult to replicate over many participants, concerns,
and software systems. To reduce participant workload as much
as possible for this difficult task, we have chosen to focus on
a smaller set of concerns (3 from the same software system)
and increase the number of annotators per concern from 3
to 6. However, the limited sample precludes overgeneralizing
from these results, and the conclusions of our study may
not generalize to other Java programs or other programming
languages.

Because the concerns were given to the participants in
the same order, it is possible that learning effects could
be present. Based on the exit survey data in Table IV, we
observe that participants rated the tasks as having relatively
uniform difficulty. As expected, the first task is slightly more
challenging as the participants learn to locate concerns and
annotate their roles. Another potential issue is whether certain
concerns are much harder to locate than others. In addition
to no learning curve, the results in Table IV show that all
the tasks were rated with similar mean difficulty and similar
variance. Finally, the equivalent means between tasks 2 and 3
demonstrate that locating concerns within the same program
does not necessarily improve with more experience.

D. Discussion

As discussed in Section IV-B, agreement is higher among
participants with knowledge of concern roles when performing
concern location. While this serves to validate our role defini-
tions, we were surprised by the degree to which participants
thought our connector role definition was unclear, as shown
in Table IV. In the exit survey, they rated this role definition
the lowest (below the neutral score of 4), and several asked
for improvements on its definition. One subject commented:

“I think connector is too broad. It seems like a catch-
all. The other categories seem like the boundaries
of the graph. The entire center of the graph is just
‘connectors’.”

A look into the annotated concerns supports this view. In
our experience, triggers typically demarcate the leading edge
of the concern, whereas actions tend to indicate the ending
boundary. For example, consider the “add auction” concern
in Figure 1. The trigger JBidProxy.buildHTML()
represents the beginning edge of the concern, and is
connected via control flow edges to actions in the
AuctionServer class. For instance, this trigger is
connected to addAuction(String) via several connectors
like AuctionsManager.newAuctionEntry().
Similarly, although harder to follow as dataflow edges
have been omitted from the diagram, the trigger
JBidMouse.DoAction uses the connectors DoAdd,

MessageQueue.enqueue, and messageAction to
eventually reach the action cmdAddAction. Both of these
examples show triggers and actions delineating the outer
edges of the concern.

As we began to view concerns in this new way, with actions
and triggers as boundary nodes and other roles dominating
the center of the graph, we investigated the agreement of
these boundary nodes. When we calculated the agreement
considering only elements that were marked by at least one
participant as a trigger or an action, the agreement increased
dramatically (see Figure 5(a)). This surprising increase in
agreement led us to reconsider our concern role definitions.
After discussion and reconsidering the concerns, which the
authors have also previously mapped themselves, we have
formed a new hypothesis regarding concern roles, which we
plan to investigate in future work: given the action and trig-
ger elements, all remaining role elements can be derived.

First, we propose that triggers and actions are the only non-
derivative concern roles. That is, the other roles, including
initializers, data, and connectors, can be derived if the triggers
and actions are known, yet triggers and actions cannot (in the
general case) be derived from the other roles. Furthermore,
we suggest that these derivative roles can be automatically
calculated from the trigger and action nodes. While the details
of how to calculate these derivative roles are left to future
work, we anticipate that existing control and data flow tech-
niques will be successful. For example, in the “add auction”
concern in Figure 1, the JBidProxy.buildHTML() trigger
is connected through control-flow call edges to the actions
in the AuctionServer class. In another example, more
complex data flow analysis could be used to connect the
JBidMouse.DoAction trigger to the cmdAddAction
action.

These results have implications for creation of future con-
cern location benchmarks. If it is possible to automatically
and reliably derive connector, data, and initializer nodes,
then future concern annotators need only locate a concern’s
actions and triggers to identify a concern. Since these roles
also have the least ambiguity in their definitions and the
highest agreement, this could have a significant impact on the
reliability of future concern data sets for concern location and
comprehension studies.

V. EXPLORATORY STUDY: FEATURE LOCATION

In addition to increasing agreement among annotators, we
hypothesize that concern element roles can provide new in-
sights to further improve feature location tools. To investi-
gate this hypothesis, we conducted an exploratory study us-
ing DocFetcher (http://docfetcher.sourceforge.net), a Lucene-
based implementation of a vector space model search tool that
utilizes tf-idf weighing. DocFetcher is effectively a front end
for Lucene (http://lucene.apache.org/), a popular search library.

We ran the search tool using the following queries taken
directly from the concern descriptions: “sort by genre” (C8),
“add song to playlist” (C7), and “play song file” (C5). Using
annotated role data from Section IV, we calculated the rank

●

●

●●

●

al
l a d c i t

0

50

100

150

200

250

300

R
an
k

% Found: 43% 55% 10% 27% 54% 82%

Fig. 8: Rank of annotated elements returned by the search tool,
categorized by role and in total (all). Below each role is the percent
of annotated elements found by the search tool.

Role Number Total Percent Recall Recall Recall
Found Number Found @ 5 @ 10 @ 20

a 24 44 55% 0.11 0.30 0.43
d 1 10 10% 0.00 0.00 0.10
c 21 77 27% 0.00 0.05 0.10
i 7 13 54% 0.15 0.15 0.31
t 18 22 82% 0.00 0.05 0.05

Total 71 166 43% 0.04 0.12 0.20

TABLE V: Number of methods annotated by study participants that
were found by the search tool, categorized by role.

of each method annotated by one of the six study participants.
Figure 8 shows the rank of each search result, categorized by
role. Below each category is the percent of that role found
by the search tool. For example, although the median rank
for connector method search results is 38, the box plot in
Figure 8 only represents 27% of all the methods annotated
as connectors by the study participants. Table V presents the
total number of each role found, the percent found, as well as
recall values at ranks 5, 10, and 20.

Based on this data, we believe that annotating feature loca-
tion results with concern element roles reveals new insights to
further improve feature location tools. Specifically, we make
the following observations:
Actions have better ranks than other roles. For this partic-
ular feature location technique, Figure 8 shows that although
actions are only found 45% of the time, when they are found,
they are in the top 10 half the time (median rank 10). We
also observe that initializers, connectors, and triggers are either
found infrequently or rank quite high. For instance, the highest
trigger rank was 9, and only 25% are in the top 25 (1st quartile
rank 24). When connectors are found (just 21 out of 77), the
median rank is 40. Although the data role had a low rank (20),
only 1 out of 10 data methods were found.
Recall can vary depending on the role. The ‘all’ box plot in
Figure 8 and the ‘Total’ row in Table V present the results that
a feature location evaluation without roles would be based on.
However, we can see that such aggregate data does not give
the whole picture. Although the overall recall at rank 10 is

12%, the recall for actions is much higher (30%) and triggers
lower (5%). Role-based analysis provides an alternative view.
Triggers are the most found role, yet have the worst ranks.
Given the nature of triggers, it is not surprising that they are
found by the search technique more than any other role (82%)
but that their mean and median ranks are much lower (150 and
198, respectively). Triggers by their definition as entry points
into a concern tend to call connectors and actions that have
stronger textual clues to the concern. In contrast, actions, as
the core of the concern, have the strongest textual relationship
to the queries.

Based on these results, the feature location technique could
be improved by leveraging call information and reranking the
results. Rather than treat all methods in the gold set as the
same, role-based interpretation of search results allows us to
drill down into the types of methods that the search technique
is finding, and potentially find new insights to improve the
feature location technique.

VI. RELATED WORK

Koenemann, et al. studied developers comprehending code
for maintenance, and differentiated 3 tiers of relevance: direct
(must be modified), intermediate (studied if interaction with
relevant code is important), and strategic (guide comprehen-
sion process; points to relevant code) [21]. These relevance
tiers are orthogonal to our concern element roles.

In a study of three hand-annotated concerns related to
specific change tasks, Murphy, et al. observed that concern
boundaries may be difficult to determine [17]. Based on
interviews with annotators, the authors observed that the
interface between concerns can itself be a concern. The authors
conclude that concerns have 3 different types of elements:
core behavior, a potentially ambiguous interface that may be
a concern in its own right, and a set of execution points
that hook into where new functionality may be added to
the concern during maintenance. Although the notion of core
nodes is similar to our action nodes, the notions of interfaces
and execution hooks are different. As previously mentioned,
interface methods are part of our trigger and connecting nodes.
Because the focus of this work is on annotating existing
functionality, we would consider execution hooks to belong
to their own concern. This work provides further support that
elements may have different roles in concerns, but does not
use these roles to decrease agreement and better understand
feature location tool results as we have.

Other work has proposed concern tagging guidelines [22].
Two investigators exhaustively identified and located concerns
by hand in two software systems. The systems were identified
at the source code line level, whereas our work focuses on
annotating concerns at the slightly higher granularity of meth-
ods or fields. The study found that agreement varied between
annotators due to an annotator’s understanding of the particular
program, experience with the programming language, as well
as a poorly defined concern description. The authors iden-
tified the following types of concerns: user-triggerable fea-
ture, domain-independent functionality, input/output, internal

features that are not user-triggerable (such as optimizations
or data buffers), and specific language characteristics such
as constants, comments, or imported interfaces. Guidelines
include data and control dependencies for groups of elements
that are deemed part of the concern.

The notion of concern element roles is loosely related to
the concept of method stereotypes [23]. Dragan, et al. propose
4 broad categories of method stereotypes: accessor, mutator,
collaborators, and creators. Stereotypes are complimentary to
our notion of concern element roles. Roles define an element’s
purpose in comprehending and executing a concern, whereas
stereotypes describe a method’s purpose in the larger system.

Concern element roles are orthogonal to the idea of roles
in object-oriented system design [24], [25]. Object-oriented
roles are used to represent dynamically changing entities
(i.e., objects) in a system. For example, the idea that a person
at a university may be a student, an employee, or a student
employee. Each type of person represents a particular role, and
these roles may dynamically change over time. In contrast, our
notion of concern element roles refers to the role a program
element’s implementation plays in the implementation of a
particular concern of the system and is independent of the
system’s overall object design or dynamic information.

VII. CONCLUSION

In addition to refining our initial definitions of the roles
that program elements play in concerns, we presented the
results from two studies that we conducted to explore how the
added role information can potentially improve evaluations of
concern location techniques. In a study of 6 Java developers
annotating 3 concerns, we found that knowledge of roles
increases annotator agreement with statistical significance
(α = 0.05). This result is even stronger when considering
only the action and trigger roles, which typically delineate the
upper and lower boundaries of the concern.

Our exploratory study examining the roles of methods re-
turned as search results from a feature location tool did indeed
provide more detailed insights into the results. For instance,
action elements appear most prominently in the top ranked
results, while trigger nodes are the most found but worst
ranked elements. The results of these two studies suggest that
integrating concern element role information into evaluations
can help to strengthen both the gold set establishment and the
analysis of results returned by various tools. To help others in
role training, the written instructions and video recording of a
webinar are shared at http://lee.cs.montclair.edu/∼hillem/cer/.

ACKNOWLEDGMENT

We would like to thank our study participants, Martin
Robillard for his contributions to early stages of this work,
and Sarah Abramowitz for her statistical guidance.

REFERENCES

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in
source code: A taxonomy and survey,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 25, no. 1, pp. 53–95, Jan
2013.

[2] S. Grant, J. R. Cordy, and D. Skillicorn, “Automated concept location
using independent component analysis,” in WCRE ’08: Proceedings of
the 2008 15th Working Conference on Reverse Engineering. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 138–142.

[3] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in
software engineering,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 842–851.

[4] E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in ASE ’11: Proceedings of the 26th IEEE International Confer-
ence on Automated Software Engineering, short paper. Washington,
DC, USA: IEEE Computer Society, November 2011, pp. 524–527.

[5] S. Lukins, N. Kraft, and L. Etzkorn, “Source code retrieval for bug
localization using latent dirichlet allocation,” in WCRE ’08: Proceedings
of the 15th Working Conference on Reverse Engineering, 15-18 2008,
pp. 155 –164.

[6] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in WCRE ’04:
Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), 2004, pp. 214–223.

[7] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: a search engine for finding functions and their usages,” in
Proceedings of the 33rd international conference on Software engineer-
ing, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 1043–1045.

[8] M. Petrenko and V. Rajlich, “Concept location using program
dependencies and information retrieval (depir),” Inf. Softw. Technol.,
vol. 55, no. 4, pp. 651–659, Apr. 2013.

[9] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Transactions
on Software Engineering and Methodology, vol. 21, no. 4, 2012.

[10] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in AOSD ’07: Proceedings of the 6th International
Conference on Aspect-Oriented Software Development, 2007, pp. 212–
224.

[11] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature location
practice with multi-faceted interactive exploration,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 762–771.

[12] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Transactions on Software Engineering and Methodology,
vol. 16, no. 1, p. 3, 2007.

[13] B. Dit, E. Moritz, and D. Poshyvanyk, “A tracelab-based solution for
creating, conducting, and sharing feature location experiments,” in IEEE
Int. Conf. on Program Comprehension, 2011.

[14] K. Damevski, D. Shepherd, and L. Pollock, “A case study of paired
interleaving for evaluating code search techniques,” in Proceedings of
the IEEE Conference on Software Maintenance and Reengineering -
Working Conference on Reverse Engineering (CSMR-WCRE), 2014.

[15] E. Hill, D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Differentiating
roles of program elements in action-oriented concerns,” in Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
2013, pp. 376–379.

[16] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and L. Pollock,
“An empirical study of the concept assignment problem,” School of
Computer Science, McGill University, Tech. Rep. SOCS-TR-2007.3,
Jun. 2007, http://www.cs.mcgill.ca/∼martin/concerns/.

[17] G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hannemann, and
W. Leong, “Design recommendations for concern elaboration tools,”
in Aspect-Oriented Software Development, T. Elrad, S. Clarke, and
M. Akşit, Eds. Addison-Wesley, 2004, pp. 507–530.

[18] E. W. Høst and B. M. Østvold, “Debugging method names,” in ECOOP
’09: Proceedings of the 23rd European Conference on Object-Oriented
Programming, 2009.

[19] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication Methods and
Measures, vol. 1, no. 1, pp. 411–433, 2007.

[20] K. Krippendorff, “Reliability in content analysis,” Human
Communication Research, vol. 30, no. 3, pp. 411–433, 2004.

[21] J. Koenemann and S. P. Robertson, “Expert problem solving strategies
for program comprehension,” in CHI ’91: Proceedings of the SIGCHI

conference on Human factors in computing systems. New York, NY,
USA: ACM, 1991, pp. 125–130.

[22] M. Revelle, T. Broadbent, and D. Coppit, “Understanding concerns in
software: Insights gained from two case studies,” in IWPC ’05: Proceed-
ings of the 13th International Workshop on Program Comprehension.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 23–32.

[23] N. Dragan, M. Collard, and J. Maletic, “Reverse engineering method
stereotypes,” in Software Maintenance, 2006. ICSM ’06. 22nd IEEE
International Conference on, 24-27 2006, pp. 24 –34.

[24] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role object
pattern,” in Proceedings of Pattern Languages of Programming (PLoP),
1997.

[25] G. Gottlob, M. Schrefl, and B. Röck, “Extending object-oriented
systems with roles,” ACM Trans. Inf. Syst., vol. 14, no. 3, pp. 268–296,
Jul. 1996.

