
On Mesh Editing, Manifold Learning, and
Diffusion Wavelets

Raif M. Rustamov

Drew University, Madison NJ 07940, USA
rrustamov@drew.edu

Abstract. We spell out a formal equivalence between the naive Lapla-
cian editing and semi-supervised learning by bi-Laplacian Regularized
Least Squares. This allows us to write the solution to Laplacian mesh
editing in a closed form, based on which we introduce the Generalized
Linear Editing (GLE). GLE has both naive Laplacian editing and gradi-
ent based editing as special cases. GLE allows using diffusion wavelets for
mesh editing. We present preliminary experiments, and shortly discuss
connections to segmentation.

1 Introduction

A remarkable similarity exists between semi-supervised manifold learning and
mesh editing: both seek to extrapolate data attached at some points to the whole
manifold.

Given a set of labeled samples, extrapolating labels throughout the entire
sample space is the task of semi-supervised learning. The qualification “mani-
fold” is added if the samples are assumed to belong to a manifold embedded into
a high-dimensional space – attaching labels is equivalent to defining a function
on this manifold.

Editing a mesh involves determining the new locations of vertices given new
locations of some of the vertices – the handles. The displacement vectors – the
differences between new and old vertex positions – can be considered to define a
function on the mesh. Thus, given the values of this function at the handles we
are trying to extrapolate to the whole mesh – a task that would otherwise qualify
as semi-supervised learning. If rotations at handles are also given, propagating
them throughout the mesh is again an instance of semi-supervised learning.

Does this similarity of the two fields extend beyond the objectives sought?
Laplacian based approaches to mesh editing start by extracting the surface’s
differential coordinates, and then reconstruct the surface by imposing the handle
constraints and requiring that the differential coordinates are preserved as much
as possible. The differential coordinates capture the local detail, so the more
they are preserved, the more the shape is preserved. When viewed from this
angle, Laplacian mesh editing seems to bear no resemblance to the methods of
semi-supervised learning.

We show, however, that there exists a formal equivalence between the naive
(linear) Laplacian editing and semi-supervised learning by bi-Laplacian Regular-
ized Least Squares (Section 4). This allows us to write the solution to Laplacian
mesh editing in a “closed” form (Section 5). Based on this closed form we in-
troduce the Generalized Linear Editing (GLE) which has both naive Laplacian
editing and gradient based editing as special cases. GLE allows using diffusion
wavelets for mesh editing (Section 6). Preliminary experiments are presented
(Section 7), and connections to segmentation are discussed (Section 8).

Our contributions are threefold: clearly spelling out the formal relationship
between manifold learning and mesh editing, introducing GLE, and using dif-
fusion wavelets for mesh editing. Although naive Laplacian editing is not prac-
tically useful, it becomes so when embedded into nonlinear schemes such as
[1]. Therefore, understanding the properties of the naive Laplacian editing bet-
ter, and investigating its potential improvements may have considerable conse-
quences on the state of art.

2 Related work

Immense attention has been received by direct surface manipulation methods
based on differential representations. The first examples were Poisson mesh
editing [2] and Laplacian coordinates [3, 4]. As we learn from [5], it was gra-
dient domain image manipulation that inspired these approaches: specifically,
the Poisson surface editing of [6] motivated Poisson mesh editing. These initial
methods are now customarily referred as naive or linear – they optimize each of
x, y, z coordinates separately, and so do not allow dealing with handle rotations.
An excellent survey of these and other linear techniques is [5].

Remarkably, differential representations come with an elegant interpretation
of being local surface descriptors. For example, Laplacian coordinates are the
components of the mean-curvature normal. The interpretation offers a strong
intuition about how to deal with rotations, and led to new techniques a few ex-
amples of which are [7–9]; a great survey is [10]. The interpretation also inspired
the development of other intrinsic coordinates: pyramid coordinates [11], and
rotation invariant coordinates [12].

In the light of all these developments, one would legitimately question whether
there is a need to study any further the linear methods, generalize or alter them.
The answer is best given by an example: in a recent paper [1], the naive Lapla-
cian editing is embedded into an iterative scheme to obtain a non-linear method.
The algorithm is guaranteed to converge and is remarkably easy to implement.
The method compares very favorably with PriMo [13], a state-of-the-art non-
linear technique. This makes us believe that understanding the properties of the
naive methods better, and investigating their potential improvements will have
considerable consequences on the state of the art.

To the best of our knowledge, the connections to the semi-supervised learn-
ing have never emerged, perhaps due to the sheer beauty of the interpreta-
tion that differential coordinates came with. Yet we must mention the inspiring

study of Lévy [14], where among other things he explains how Laplace-Beltrami
eigenfunctions can be used to manipulate shapes. He proposes pose transfer
by exchanging expansion coefficients of the coordinate functions in terms of
Laplace-Beltrami eigenfunctions. In addition, in [15] geometry filtering is per-
formed by modifying the expansion coefficients. Another work that uses the
Laplace-Beltrami expansion coefficients is [16], where the size of linear systems
associated with Laplacian editing are significantly reduced to achieve interactive
computational speed for manipulating large meshes. All of these works can be
interpreted as an approach to editing where the control is vested into these ex-
pansion coefficients, yet they discuss the connections to neither manifold learning
nor to Laplacian editing. In a different context, let us also mention the paper
[17] which studies mesh smoothing in the light of Laplacian eigenbasis and reg-
ularization.

Using different function bases to manipulate meshes would not be surprising
to the space deformation community. Just to mention a few, in [18–21] Radial
Basis Functions (RBF) are used to infer the space deformation that would satisfy
given constraints. There are many bases to choose from and, thus, flexibility to
decide based on time/quality constraints. However, to the best of our knowledge,
the idea to use different bases to generalize/modify a direct manipulation method
such as Laplacian editing is novel. Let us add that diffusion wavelets have found
only very limited use in digital geometry processing – the only work that we are
aware of is [22] where diffusion wavelets are used for mesh compression.

As for manifold learning, we can only mention some key papers that are
directly relevant. Laplacian based regularization was introduced in [23], where
semi-supervised learning is reduced to minimization of an expression which con-
tains a penalty term to enforce the labels of labeled samples, and terms to ensure
“continuity” of labeling – “close” points get similar labels. The latter are called
the regularization terms; they ensure that learning results in a sufficiently smooth
function. As shown in [23], the Laplacian – the manifold’s Laplace-Beltrami op-
erator – makes a good regularization term for a variety of learning applications.
Diffusion maps, diffusion wavelets, diffusion wavelet packets and other related
concepts were introduced by R. Coifman and coworkers, and the definitive ref-
erence is the special issue [24].

3 Manifold learning

We will avoid describing the most general setting for manifold learning, rather
our exposition will be geared towards surfaces in space – we will make assump-
tions and introduce notations most appropriate for our purposes. We will con-
centrate on versions of Laplacian regularized least squares learning, a concept
introduced in [23], heavily borrowing from it and from paper [25] with some
notational modifications.

We start with a connected surface S. Some of the points on the surface, say
{pi}li=1 have been labeled – real numbers {di}li=1 have been assigned to them.

Semi-supervised learning seeks a function f∗ that minimizes

l∑
i=1

(f(pi)− di)2 + β‖f‖2E + γ‖f‖2I . (1)

The first term tries to enforce the function to take values prescribed at labeled
vertices. The last two terms are called regularization terms, and they aim to
make the function smooth in extrinsic and intrinsic senses. To clarify, extrinsic
smoothness could mean that function takes close values at points that are close
in Euclidean space; intrinsic smoothness would mean close function values for
points that are geodetically close. We will be mostly interested in the first and
last terms, dropping the middle terms of (1) in what follows.

Belkin et. al. [23] propose to use the surface integral of function’s gradient as
the intrinsic regularization term, which can be rewritten using Green’s theorem
as

‖f‖2I =
∫
S
f∆f,

where ∆ is the Laplace-Beltrami operator of the surface. They also note that
iterated Laplacians ∆k and linear combinations of these can be used in this
expression to yield other examples of intrinsic regularization terms; thus for a
self-adjoint linear differential operator L on the surface, we have the regulariza-
tion term

‖f‖2I =
∫
S
fLf.

The natural realm for discussing the minimization problem (1) is an appro-
priately chosen Reproducing Kernel Hilbert Space. We avoid these details, and
only point out to a few consequences. Let us denote by µi and ei : S → R
the eigenvalues and the eigenfunctions of the linear operator L. These satisfy
Lei = µiei. Since L is self-adjoint, the eigenfunctions constitute an orthogonal
basis for L2(S). For a function f =

∑
i ciei, the intrinsic regularizator easily

evaluates to
‖f‖2I =

∑
i

µic
2
i .

Now, the kernel function

K(p,q) =
∑
i

ei(p)ei(q)
µi

can be defined (note the similarity with the formula for matrix pseudoinverses);
the important point is that the solution of the semi-supervised learning problem
(1) can be written as

f∗(q) =
l∑
i=1

aiK(pi,q).

Notice that the summation is over labeled point’s indices. Numbers ai are the
entries of the vector a which solves the equation

(γIl +K ′)a = d. (2)

Here Il is the l × l identity matrix, K ′ is an l × l matrix with K ′ij = K(pi,pj),
and d is the vector whose i-th entry is the label di.

4 Laplacian editing reinterpreted

Given a surface mesh, mesh editing allows a user to modify it by specifying
new positions for some surface points; these user constrained points are called
handles. Laplacian mesh editing is based on extracting the surface’s differential
coordinates, and then reconstructing the surface by imposing the user constraints
and requiring that the differential coordinates are preserved as much as possible;
for a recent survey we refer the reader to [5]. We will show that the naive or
linear version of Laplacian editing, the version where handle rotations are not
propogated, is equivalent to semi-supervised learning with the bi-Laplacian as
the regularizator.

Consider projection onto x-coordinateπx : S → R, i.e. the function whose
value πx(p) is the x-coordinate of the surface point p. This function, will be
assumed to satisfy

∫
S πx = 0, which in all cases can be achieved by translating

the origin to the center of mass of the surface. The differential coordinate δx(p)
is defined by

δx(p) = ∆πx(p),

where ∆ is the Laplace-Beltrami operator of the surface. In a similar way one
defines δy(p) and δz(p). As an aside, the differential coordinates are precisely
the components of the mean curvature normal.

The edited surface S ′ is in one to one correspondence with the original sur-
face, so we will use the same letter to denote both a point on S and S ′. Also,
S ′ has its own function π′x. Suppose that the handles are the points {pi}li=1,
and the user has specified new x-coordinates for these points as {x′i}li=1. Soft
constraint Laplacian mesh editing constructs the new surface by minimizing the
expression

l∑
i=1

(π′x(pi)− x′i)2 + γ

∫
S

(∆π′x − δx)2.

We are able to treat the x-coordinate separately, since in Laplacian editing mesh
coordinates are treated independently.

Now we will rewrite the problem. Let us introduce the function f = π′x−πx,
the difference between the old and new x-coordinates. Along with the corre-
sponding functions for the other two coordinates, this function completely de-
termines the new surface in terms of the old. At the handle points pi the user
has specified the sought values of f , which we denote by di = x′i − πx(pi). Note
that

∆π′x − δx = ∆π′x −∆πx = ∆f.

The equality ∫
S

(∆f)2 =
∫
S
f∆2f

follows from Green’s theorem; this changes our optimization problem into

l∑
i=1

(f(pi)− di)2 + γ

∫
S
f∆2f.

This is precisely equation (1) of semi-supervised learning with L = ∆2. Notice
that, the same derivation is valid for surfaces with boundary, if f assumed to
satisfy the Neumann boundary condition. With little thought the reader can see
that this assumption is implicit in Laplacian editing.

In a similar vein, let us show that gradient based editing of [2] is equivalent to
semi-supervised learning with Laplacian as regularizator; this is precisely Lapla-
cian Regularized Least Squares presented and studied in [23]. In fact, gradient
based editing seeks to minimize the expression

l∑
i=1

(π′x(pi)− x′i)2 + γ

∫
S

(∇π′x −∇πx)2,

where ∇ is the gradient. In other words, the reconstruction aims to preserve the
gradients of mesh coordinate functions – “gradient coordinates” ∇πx. Using our
notation and applying Green’s theorem this can be rewritten as

l∑
i=1

(f(pi)− di)2 + γ

∫
S
f∆f.

Clearly, this is the semi-supervised learning objective with L = ∆.
This proves our claim that formally, Laplacian mesh editing is an instance

of semi-supervised manifold learning. The formulas make clear that the preser-
vation of differential coordinates is equivalent to intrinsic regularization. This
equivalence has an intuitive appeal: regularization forces the displacement func-
tion f to be “smooth”, this in turn allows to protect the local surface detail –
the original goal behind the preservation of differential coordinates.

5 Consequences

After establishing the relationship to manifold learning, we can start importing
knowledge from the field. Let us discuss two such examples – they will motivate
a generalization of Laplacian and gradient editing.

First, we can write an explicit formula for the solution of the Laplacian and
gradient editing. In fact, consider the eigenvalues λi and eigenfunctions φi of the
Laplace-Beltrami operator. The eigenvalues are non-negative and constitute a
discrete set; we put them into non-decreasing order

λ0 = 0 < λ1 ≤ λ2 ≤ . . . ≤ λi < . . .

Note that λ = 0 is always a simple eigenvalue because the surface is assumed to
be connected. The appropriately normalized eigenfunction corresponding to λi
will be denoted by φi. Notice that the bi-Laplacian has the same eigenfunctions
φi, with corresponding eigenvalues λ2

i .
Now the kernel function corresponding to Laplacian editing is given by

K(p,q) =
∞∑
i=1

φi(p)φi(q)
λ2
i

and the solution to the mesh editing problem is

f∗(q) =
l∑
i=1

aiK(pi,q),

where ai are found by solving the system (2). A similar formula is valid for
gradient based editing – one replaces λ2

i by λi in the definition of the kernel
function.

Second, there is an interpretation of regularized manifold learning schemes
which translates into a remarkable reading of Laplacian editing. To explain, we
follow [25] and write the minimization in bi-Laplacian regularized Least squares
in terms of eigenvalues and eigenfunctions of Laplace-Beltrami operator.

Remembering that the eigenfunctions φi constitute a basis for L2(S), we can
expand any function as f =

∑
i ciφi. When this expansion is plugged into the

bi-Laplacian regularizator in the objective function, the expression to minimize
reduces to

l∑
i=1

(f(pi)− di)2 + γ
∑
i

λ2
i c

2
i , (3)

while similar formula for Laplacian based regularization would contain λi in-
stead of λ2

i . Thereby, we are trying to device a function by combining φi so
that this combination takes prescribed values in the least squares sense, but we
harshly penalize for the use of high frequency eigenfunctions – eigenfunctions
corresponding to larger eigenvalues.

Thus, in some sense, Laplacian based semi-supervised learning assumes that
Laplacian eigenfunctions constitute the preferred “learning basis”. Preferred,
because they provide the smoothest basis for L2(S) in the sense explained in [25].
Higher penalty for high frequency eigenfunctions makes sure that the solution
is smooth enough. This fits very well with Occam’s razor – lower frequency
eigenfunctions are “simpler”. For example, under general conditions, the first
eigenfunction φ1 changes its sign only once, and has only one minimum and one
maximum.

In the context of mesh editing, we should perhaps talk about the “motion
basis” of an object. The motion basis would contain (linearly independent) dis-
placement functions for natural articulations of the object, ordered from the
simplest to the most complex. One could device a measure of complexity for lin-
ear combinations of motion basis functions. The objective of mesh editing would
be to find the simplest such combination that satisfies the user constraints.

From this perspective, the fundamental assumption of Laplacian editing is
that Laplacian eigenfunctions constitute a good motion basis. Clearly, the dif-
ference between Laplacian and gradient based editing is in the penalty for using
high frequency eigenfunctions – Laplacian editing is harsher in this respect. Of
course, using higher iterated Laplacians in the regularizator further increases the
penalty for using high frequencies. An important question emerges – do we have
to base our regularization on Laplacian or its iterates? Can we set the penalties
manually for each eigenfunction?

Clearly such a modification of Laplacian editing, namely choosing the penal-
ties manually, can be obtained by simply changing the formula for the kernel
into

K(p,q) =
∞∑
i=1

φi(p)φi(q)
µi

.

We speculate that if the user agrees to set µi =∞ for all i > r, then this formula
can be efficiently implemented to allow the user to adjust the remaining penalty
weights µi interactively. Setting infinite penalties is equivalent to truncating
the sum in the formula for the kernel function – effectively keeping only r low
frequency eigenfunctions.

Remember that in discrete setting, the Laplacian and the kernel function are
n×n matrices, where n is the number of mesh vertices in the region of interest.
We will assume that one computes r eigenvectors in the preprocessing step. Of
course, computing the eigenvectors of a matrix is a considerable burden; yet if
r is in the range of a few hundreds, that many eigenvectors of the Laplacian for
a mesh as large as 250K vertices can be evaluated in about 15-20 minutes [15].
During the interactive session, editing will involve solving an l× l linear system
(2), where l is the number of handles, and evaluating the linear combination of l
columns of the kernel matrix – the columns associated with the handle vertices.
Of course, we should not pre-compute and store the whole n×n kernel matrix in
the main memory. Instead, storing only the r eigenvectors will reduce the space
requirement from O(n2) to O(nr). Now notice that the time complexity of the
interactive part – obtaining the new vertex coordinates after the user modifies
the penalty weights – is linear in the number of vertices, O(nl + nr). Also, the
new coordinates can be evaluated in parallel. Let us emphasize that we have
not implemented this approach, and we do not know how the omission of high
frequency eigenvectors will influence the result of editing.

6 GLE and diffusion wavelets

Once again, do we have to base our regularization on Laplacian or its iterates?
Can we use a different basis? These questions lead us to propose the following
Generalized Linear Editing, GLE for short. Similar to naive Laplacian editing,
GLE does not handle frame rotations, and the displacements of each coordinate
are evaluated independently. Thus, for brevity, we concentrate on obtaining the
x coordinates only; the other two coordinates require the same steps, perhaps

with different bases and weights if wanted. At the cost of self-repetition, let us
clearly outline the algorithm:

1. Pick an orthonormal basis ei of L2(S); here S is the edited surface.
2. Assign penalty weights µi to each of the basis functions ei.
3. Define K(p,q) =

∑
i ei(p)ei(q)/µi.

4. Let l handle vertices pi, i = 1, ..., l and their x-coordinate displacements
di, i = 1, ..., l be given. Construct vector d whose ith entry is di. Solve the
equation

(γIl +K ′)a = d

for a, where K ′ij = K(pi,pj) is an l× l matrix. Here γ is a user set positive
parameter – the larger is γ the less is pressure to satisfy the displacement
constraints, the more weight is given to the regularization term.

5. Compute the new x coordinate q′x of the point q using the formula q′x =
qx +

∑l
i=1 aiK(pi,q).

When dealing with some region of interest instead of the whole mesh, one
will require the boundary to stay constant. This can be achieved in GLE by
using basis functions that are supported on the region of interest.

One also may wish to enforce the handle constraints with different weights.
Suppose that weights wi are associated with handle vertices pi, i = 1, ..., l. One
then can construct the l× l diagonal matrix W with Wii = 1/wi; now in step 4,
one replaces the equation for a by (γW +K ′)a = d.

Notice that both the Laplacian and gradient based mesh editing are examples
of GLE. To provide further examples, let us use diffusion wavelets [26] as a basis.
The following discussion will be geared towards implementation, providing the
discrete counterparts of the steps above.

Let P be a set of points on a mesh. Clearly, any real-valued function on P can
be recorded as a vector in R|P |. Then, a diffusion operator T (that linearly acts
on these vectors) is a matrix that satisfies certain properties, most notably its
eigenvalues are in the [0, 1] interval. In the implementation of diffusion wavelets
that we worked with [27], among a few choices for T we used the following:
vertices of the mesh are considered as a point cloud, and for each point, one
finds a fixed number of nearest neighbors and assigns the corresponding matrix
entry to be exp(−∆ ∗ dist2), where dist is the distance to the point in question.
This choice on our part was forced by the fact that the diffusion wavelet code
was written by the manifold learning community and was geared toward working
with point clouds.

Diffusion wavelet construction uses the diadic powers of T to construct sub-
spaces Vi and Wi of R|P | together with their orthogonal bases; the subscript of a
subspace is called its level. These subspaces satisfy R|P | = W0⊕V0, V0 = W1⊕V1,
V1 = W2 ⊕ V2, and so on. In fact, in the implementation we worked with,
W0 = {0}, and V0 = R|P | with delta-function basis. To obtain the basis of sub-
space Vi+1, one acts by the diadic power of diffusion operator T 2i

on the basis of
Vi, and applies some thresholding and a special locality preserving orthogonal-
ization. An important property of these bases is that different levels represent

different scales – together they provide a multi-scale basis of R|P |. For example,
the basis vectors in V0 represent the smallest scale possible – their support is
just one vertex. Meanwhile, the basis vectors of subspaces of high level have
global nature, because they are obtained by many repetitive applications of the
diffusion operator – in a sense, the function values are diffused throughout the
mesh.

Fixing some maximum level m that one desires to work with, one can write

R|P | = W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wm ⊕ Vm.

In addition, gathering the bases of the subspaces appearing in this equality, one
obtains an orthogonal basis of R|P |. It is this basis that we will use for editing.
Let us construct the |P | × |P | matrix E which contains the basis vectors as
its columns. Next, we need penalty weights µk, k = 1, ..., |P |. Since functions
in higher levels are smother, we have made a design decision to set µk = 1/lα,
where l is the level from which the basis vector ekcomes from, and α is a positive
user set parameter, the larger it is the more high-level functions are preferred.
Very similar results are obtained by setting µk = 1/βl, with β > 1.

Consider the matrixM which hasMkk = 1/µk, and has zeros everywhere else.
Notice that the discrete counterpart of the kernel function K(p,q) is a |P |× |P |
matrix which we denote by K as well; clearly, K = EMET . Implementing the
rest of the steps should be straightforward.

7 Results and Discussion

We provide preliminary results of GLE using diffusion wavelets. Our starting
surface is the unit sphere; the mesh is obtained through platonic subdivision
using trimesh2 library. The number of vertices is |P | = 482. We choose m = 12
because V12 is one-dimensional, and so no more basis vectors coming from Wi’s
are produced. Choosing a smaller value of m will lead to less smooth edits,
because smoother basis functions belong to higher levels. Figure 1 depicts the
result of applying the following editing constraints: the south pole stays the
same, the north pole’s z-coordinate increases by 1. For comparison, the result of
Laplacian editing using cotangent weights is shown in the same figure.

Diffusion wavelets work with more complicated constraints as well. The con-
straints for Figure 2 are as follows: the vertices with |z| < 0.1 are moved closer
to the origin by setting x→ 0.5x, y → 0.5y, and the vertices with |z| > 0.7 are
kept same.

Our preliminary implementation was done in MATLAB, and it uses the dif-
fusion wavelet code provided on Mauro Maggioni’s website [27]. To give an idea
about timing: computation of diffusion wavelet basis for |P | = 482 took about 9
seconds, and editing took about 0.5 seconds. However, if the number of vertices
is doubled, the time spent to compute the diffusion wavelet basis increases to
about 90 seconds, while edit time goes up to 6 seconds. The experiments were
run on T7200 @ 2.0GHz laptop with 1GB main memory, running Windows XP
Professional.

Fig. 1: Diffusion wavelet deformations of the sphere are in red. The parameters
are as follows: m = 12, and α = 0, 1, 2, 4, 8, 16 in respective order. The result of
Laplacian editing with the same constraints is given last in green.

Fig. 2: Diffusion wavelet deformation of the sphere is in red; m = 12 and α = 16
were used. The result of Laplacian editing with the same constraints is in green.

7.1 Discussion

First, going back to the experiment of Figure 1, notice that by increasing α we
decrease the penalty of using high level basis vectors, this effectively suppresses
the use of lower level vectors, and results in smoother, more global edits. Thus,
the choice of this parameter can be tuned by whether less smooth local or more
smooth global edits are wanted. Such scale control in Laplacian editing can only
be achieved by varying the region of interest. This is due to the global nature
of Laplacian eigenfunctions – their support is the whole mesh. This results in
a “butterfly effect” – one may intend to make a little bump on the sphere, but
would end up with an ellipsoid.

Second, the reader would have noted our use of uniform sphere sampling.
With the implementation of diffusion wavelets that we used, we feel that, at least
theoretically, uniformity is necessary. Indeed, the computed diffusion wavelet
basis vectors are orthogonal with respect to the standard inner product on R|P | –
an inner product that does not correspond to anything geometrically meaningful
unless the mesh vertices are distributed uniformly over the area of the surface.
However, in practice non-uniform sampling leads to mixed results. For example
Figure 3 a) shows a very satisfying result of diffusion wavelet editing on a sphere
mesh obtained using longitude-latitude triangulation. Figure 3 b) shows what
happens if constraints include both of the poles of this non-uniformly sampled
sphere. It is certainly not very satisfying when compared to Laplacian editing.

(a) (b)

Fig. 3: a) Diffusion wavelet deformation of longitude-latitude triangulated sphere.
The parameter values m = 12 and α = 16 were used. Same constraints as for
Figure 2. b) Same as in a) except that the “squishing” circle passes through the
poles. The result of Laplacian editing with this constraint is in green.

Let us conclude by noting that one could in principle circumvent this issue
by first sampling a uniform point cloud on the surface, evaluating the diffusion

wavelets, and then interpolating their values from the point cloud to the mesh
vertices.

8 Connections to segmentation

Motion based segmentation [28–30] inputs an animation sequence of a boundary
mesh, and clusters together points that move in accord to produce a segmenta-
tion. Now one can imagine feeding to such an algorithm “animations” generated
by applying Laplacian editing or GLE to the mesh – this would give a segmen-
tation associated with a given mesh editing approach.

Do we need to explicitly produce these animations in order to get the asso-
ciated segmentation? Looking at the solution of GLE,

f∗(q) =
l∑
i=1

aiK(pi,q),

we notice that the value of K(pi,q) measures how much point q is influenced by
editing the handle at pi. Consequently, within the GLE framework, the magni-
tude of the kernel function K(p,q) is a measure of how much the points p and
q move in accord – making the kernel function a natural measure of similarity
for motion based segmentation. This is not a new approach to segmentation: for
example, [31] spells out similar ideas and uses the Green’s function of Laplace-
Beltrami operator – the kernel function of gradient-based editing – to obtain
pose-invariant segmentation of meshes.

Interesting is the manifold learning perspective on this association of editing
and segmentation. Indeed, there is a similarity between mesh segmentation and
unsupervised manifold learning. In mesh segmentation the objective is to assign
a discrete set of labels, segment identifiers, to the mesh vertices. This is similar
to defining an integer valued function on a point cloud in a meaningful way –
an instance of unsupervised manifold learning. But for each supervised method
based on regularization, one can device a corresponding unsupervised method
by simply using the same regularization term. In this case one would search
for a function f : S → R satisfying appropriate conditions – such as being a
fuzzy membership function that clusters points into even clusters – that mini-
mizes ‖f‖2I . Thus, it is not surprising to have a segmentation scheme canonically
associated with an editing method.

We conclude by noticing that the connection between mesh editing and seg-
mentation can be helpful when designing bases for GLE, assuming that a basis
that produces better segmentations should result in better editing.

9 Summary and future work

We have stated the formal relationship between manifold learning and naive
Laplacian and gradient-based editing. As a result, we were able to introduce a

generalized editing approach that allows the use of diffusion wavelets for mesh
editing. We believe that diffusion wavelets are a very promising alternative to
Laplacian eigenfunctions because due to their multi-scale nature. More experi-
ments will be required to verify this; including experiments where handle rota-
tions are propagated either using the existing approaches or through some new
approach based once more on diffusion wavelets. Replacing the naive Laplacian
editing by GLE in iterative methods such as [1] would provide another venue for
experimentation. Another very important direction for future research is devis-
ing diffusion wavelets for triangle meshes rather than point clouds and resolving
the issue of non-uniform sampling. Faster algorithms to evaluate such wavelets
would be indispensable for practical applications.

On the intriguing side, we would like to investigate whether the equivalence
extends to non-linear mesh editing approaches as well, and if so, to exploit these
equivalences in the opposite direction – see if the insights gained from mesh
editing can help in the realm of manifold learning.

References

1. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings
of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. (2007)
109–116

2. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing
with Poisson-based gradient field manipulation. In: TOG(SIGGRAPH). (2004)
644–651

3. Alexa, M.: Differential coordinates for local mesh morphing and deformation. The
Visual Computer 19(2-3) (2003) 105–114

4. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding.
In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, Eurographics Association (2003) 42–51

5. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE
Transactions on Visualization and Computer Graphics (2007) To appear.

6. Prez, P., Gangnet, M., Blake, A.: Poisson image editing. TOG(SIGGRAPH) 22(3)
(2003) 313–318

7. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Lapla-
cian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing, ACM Press (2004) 179–188

8. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface defor-
mation. Comput. Graph. Forum 24(3) (2005) 601–609

9. Lipman, Y., Cohen-Or, D., Gal, R., Levin, D.: Volume and shape preservation via
moving frame manipulation. ACM Trans. Graph. 26(1) (2007) 5

10. Sorkine, O.: Differential representations for mesh processing. Computer Graphics
Forum 25(4) (2006) 789–807

11. Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In:
3DPVT ’04: Proceedings of the 3D Data Processing, Visualization, and Trans-
mission, 2nd International Symposium, Washington, DC, USA, IEEE Computer
Society (2004) 68–75

12. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coor-
dinates for meshes. ACM Trans. Graph. 24(3) (2005) 479–487

13. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive
surface modeling. In: SGP ’06: Proceedings of the fourth Eurographics symposium
on Geometry processing, Aire-la-Ville, Switzerland, Switzerland, Eurographics As-
sociation (2006) 11–20

14. Lévy, B.: Laplace-Beltrami eigenfunctions: Towards an algorithm that understands
geometry. In: Shape Modeling International. (2006)

15. Vallet, B., Lvy, B.: Spectral geometry processing with manifold harmonics. Com-
puter Graphics Forum (Proceedings Eurographics) (2008)

16. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7)
(2008) 787–796

17. Volodine, T., Vanderstraeten, D., Roose, D.: Smoothing of meshes and point clouds
using weighted geometry-aware bases. In: GMP. (2006) 687–693

18. Borrel, P., Rappoport, A.: Simple constrained deformations for geometric modeling
and interactive design. ACM Trans. Graph. 13(2) (1994) 137–155

19. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. In:
SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, New York, NY, USA, ACM
(2005) 21

20. Reuter, P., Tobor, I., Schlick, C., Dedieu, S.: Point-based modelling and rendering
using radial basis functions. In: GRAPHITE ’03: Proceedings of the 1st interna-
tional conference on Computer graphics and interactive techniques in Australasia
and South East Asia, New York, NY, USA, ACM (2003) 111–118

21. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions.
Comput. Graph. Forum 24(3) (2005) 611–621

22. Mahadevan, S.: Adaptive mesh compression in 3d computer graphics using mul-
tiscale manifold learning. In: ICML ’07: Proceedings of the 24th international
conference on Machine learning, New York, NY, USA, ACM (2007) 585–592

23. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7
(2006) 2399–2434

24. Coifman, R.R.: Special issue on diffusion maps. Appl. Comput. Harmon. Anal.
21(1) (2006) 3

25. Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Mach.
Learn. 56(1-3) (2004) 209–239

26. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal.
21(1) (2006) 53–94

27. Maggioni, M.: Diffusion wavelet code. http://www.math.duke.edu/ mauro/DWCode.zip
28. Lee, T.Y., Lin, P.H., Yan, S.U., Lin, C.H.: Mesh decomposition using motion

information from animation sequences: Animating geometrical models. Comput.
Animat. Virtual Worlds 16(3-4) (2005) 519–529

29. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation
sequences. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ACM Press (2005) 209–217

30. Günther, J., Friedrich, H., Wald, I., Seidel, H.P., Slusallek, P.: Ray tracing an-
imated scenes using motion decomposition. Computer Graphics Forum 25(3)
(September 2006) 517–525 (Proceedings of Eurographics).

31. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape
representation. In: Symposium on Geometry Processing. (2007)

