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SECTION 1: INTRODUCTION

The notion of a "weave" was defined by Gaisi Takeuti as an approach to
the problem of the determinateness of games (among other things). It was
suspected that weaves would be interesting in their own right as set-theoretic
structures. The discovery of The Fundamental Theorem of Normal Weaves
indicated the truth of these suspicions. In this thesis we present still more
evidence. |

We define the term “normality" for weaves. Roughly speaking, normality
is analoguous to the notion of determinateness for games. The Fundamental
Theo;em tells us that normal weaves can be viewed as combinations of other
normal weaves, and that the methods of combination bear similarity to the
logical connectives A and Vv . We use this knowledge in Sections 3 and 4
to give two ways of representing weaves. In Sections 5 through 8 we present
and c]arify some of the properties of weaves. In Section 10 we present still
another way to represent weaves. This representation is quite different from
the ones given in Sections 3 and 4, and does not make explicit use of The
Fundamental Theorem (although The Fundamental Theorem is still used to prove

theorems about this method of representation). Sections 9 and 11 are devoted

specifically to presenting two problems concerning weaves. We present some
possible directions for the solutions of these problems. In Sections 12 and
13 we exploit the similarity between the logical connectives A and V and

the methods of combining weaves. We use weaves to define two non-standard

systems of logic.
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We begin with a definition.

DEFINITION: Let D be a set. Let ol and €N be non-empty subsets of
(P (D) - {p}. The pair < 4l , (R.> is a weave of D iff
(1) WYLel Y Re® L MRisa singleton set, and
(2) Yded ILed JRe@® s.t. {d} =L O R
The set D is called the alphabet of <o , (R > , and we denote this by
writing D = Alph(< ,,Q , R >). More generally, if OQ is any non-empty family
of sets, let Alph( . ) be the union of all sets in J_ . Elements of
Alph( J_ ) are called letters.

EXAMPLES :

(1) oL = {0}, {1}, {2}}

R = ({0, 1, 2}}

The pair < L, 02_ > is a weave of {0,1,2}.

(2) L = {{a,d}, {b,c}}
R = {{a,b}, {c,d}, {a,c}, {b,d}}
(3) L= {{a,d}, {b,c}}

Q = {{a,b}, {c,d}, {a,c}}




DEFINITION: The pair < &£ ,& > is called a trivial weave iff either
(a) L {{d}|d € D} and R = {D}, or
(b) & =1{D}and R = {{d}|d e D}.

A very important property of weaves is the property of being normal.

DEFINITION: The weave < L , R > is normal iff Y X € Alph(< £ , R >)
either J Led sit.L € Xor JRe®R s.t. R € Alph(< &L , R >)-X.
Notice that example (2) is a normal weave, but example (3) is not, because
X can equal {a,c},
It is difficult to get a useful intuitive feeling about what "normality"

really means. The following set of lemmas should help.

DEFINITION: Let L be a non-empty family of sets. The set C is a choice set
for JL (abbreviated, cs for £ ) iff ¢ < Alph( & ) and, for each set L

in L ,cn L # @. The set G is a good choice set for o (abbreviated, gcs

for L ) iff G © Alph( o ) and, for each set L in L ,6 MNLisa
singleton set.

The family of choice sets for J. 1is denoted C(L). The family of good
choice sets for o is denoted g(L ).

Notice that a cs or a gcs %or L must be a subset of Alph( & ). This

subtlety will become an important issue in the proof of The Fundamental Theorem.
LEMMA 1.7: If A and B are both gcs's for L »and A & B, then A = B.

PROOF: Assume b € B - A. Since B = Alph( <C ), there is a set L in L such
that b e L. So B @ L = {b}. But then, since b £ A, we have A M L =,




E _

contradicting the fact that A is a gcs for UC . Q.E.D,

If < & 5 G{. > is a weave, then every set L in JL 1is a gcs for R_, and

every set R in R is a gcs for &£ , so we have the following.

COROLLARY: If R;, R, ¢ (R and Ry & Ry, then Ry = R,. If Lys Ly e L

[ ey =
and L] = L2, then L] L2‘
LEMMA 1.2: If < £, R > is normal, then

1) R g(cﬁ),and
@ L =9 (R).

PROOF: To prove (1) it is enough to show that, for every G which is a gcs of

L, 6isin R .

Let G be a gcs of & . Then there is no set L in J . such that
L € Alph( L ) - ¢ (because otherwise L would not meet G), so, by normality,
there is a set R in R such that R © G. But R and G are both gcs's of

L, so by Lemma 1.1, R = G. Q.E.D.

We often abbreviate the notation for a weave < s Q >, where
R =g (L), by simply writing L. If we write "  is normal", we

mean that we have a normal weave < {_, R_ >, in which case AR = 8 (L)

and d_ = g (QR).

LEMMA 1.3: The weave < oQ,Q > 1is normal iff, for every X, if X is a ¢cs of
ol , there exists an X' < X such that X' is a gcs of L,




PROOF: The formula
VX (Xxisacsof L =Ix'e xs.t. x is a gcs of L)
is true iff
VA (Risacsof L = HRQEs.t.Risagcsofcﬁ]
(where A is Alph( J_ )-A). This last formula is true.in turn iff
YAGEILeL s.t. LEA= I RS As.t. Ris ages of ),
which is true iff
VA(ILed sit.LcA=>3IRchs.t. Re R),
which is true iff

VA(JLeL sit.LeA v JrReR s.t. R <A)

is true. Q.E.D.

Lemma 1.3 will be very important in the next section.

LEMMA 1.4: For any non-empty family L ,

(M) 94 (L)2 L, and

(2) 333 (L) =Cg (L).

PROOF: (1) If L e and G € Q ((.f_), then L M G is a singleton, so

L e g_g(;ﬂ). Thus gg(f);)ﬁ_.
(2) By (1) we have ggg(ﬁ) ;g(;). Ieraj%(u&) and




Le o , then X M K is a singleton for every set K in 33(£ ). But
again by (1), L ¢ gg_(qﬂ,). Thus XN L is a singleton. -So X eg (L ).

Therefore ggg( L) = Cg’ (L ). Q.E.D.

One of the reasons for studying weaves is that they resemble games.
Questions about determinateness of games have their counterparts in questions
apout the normality of weaves, and vice-versa.

For instance, consider the well-known paper-scissors-stone game.

P1ayers I and II simultaneously present one of either "paper", "scissors",
or "stone". (For definiteness we can declare player I to be the winner if

both players present the same item.) This game can be represented by the

following weave.

"E = | {<p,sc>, <p,st>, <p,p>}
{<sc,sc>, <sc,st>, <sc,p>}

{<st,sc>, <st,st>, <st,p>}

G{ ={ {<p,sc>, <sc,sc>, <st,sc>}

{<p,st>, <sc,st>, <st,st>}

{<p,p>, <sc,p>, <st,p>}

The set {<p,st>, <sc,st>, <st,st>} represents player II's presenting "stone".

. Here the set {<p,sc>, <p,st>, <p,p>} represents player I's presenting "paper".




The intersection of the two sets is <p,st>, meaning that player I picked
"paper" and player II picked "stone", and so player I wins.

There is no winning strategy for either player in the paper-scissors-
stone game, and notice that the weave < c[l s (;Z“ > is not normal. In fact,
such a simultaneous-play game is determined iff the associated weave is
normal.

What we want to do now is to connect this idea of determinateness of
simultaneous-play games to that of determinateness for ordinary two person
gémes as defined in [3]. Henceforth these ordinary two-person games will be

referred to as Gale-Stewart games.

DEFINITION: Let F < @& (Alph( QC, )). Then < L : @ > is called

JF-normal iff, for every set X in 4,there exists an L e d- such that L € X

= ]

or there exists an Re & such that R € ATph(cC_) - X.

DEFINITION: Let 3‘1 < G’(D]) and # 2 c @ (Dz). A tensor product of

3 and F,» which is denoted F,® F,, is defined by the following :
F10 F, =ttcqp, dpdd e Fooad, € f(d)]]
Fie :—,L] A fiFy > }2},.

LEMMA 1.5: For all F, (F,® F,)® F3* FH @ (F,® Fy)-

The element of }1 ® .3('2 which is obtained from F; e :{-] and f:F, —>3‘2

is denoted. by F,".




LEMMA 1.6: Let < oC i (Qi> be a weave of D; for i =1, 2. Define <£, =

OC.] ® oC,zand @= G{] &® @2. Then < £,®>isaweave

OfD':D'IXDz.

PROOF: Since 0C1 x L 2 L L and Q] X CR 2 c 63\ , it suffices

to show that, for every L € oC_ and every R € @ s L CYR=T,

‘Let L be obtained from LT € oc_] and f] p L] - oC_ 25 and let R be obtained

from R] € G{] and g; R] + G)\Z' Let L] M R] = {d]}, f1(d]) = L2, and

91(d]) = R,. Then the Temma is proved, since L N R = {dl} x (L M R,). Q.E.D.

DEFINITION: The weave < c;Q] ® L 2 Ql ® Q ,> 1§ called a tensor

product of < ‘P\l’ R )> and < QQZ, R >

n ) .
Let < EAP R > be a normal weave of Di’ for each i < w. Define a game

I' as follows.

Let X be a subset of I Di'
i

Stage 0: Players I and II simultaneously choose sets Ld e JL_ o and

RO e &R 0 respectively.




Stage i: Players I and II simultaneously choose sets L1 £ clz i and

Ri € (;l j respectively.

For each i, let Li M Ri = {di}' We say that player I wins the game iff

1° d2, ...> is in X. Otherwise, player II wins. This is

the sequence <d0, d
called a weave game with underlying set X.

Remark: This weave game is a generalization of the Gale-Stewart game. A
Gale-Stewart game can be thought of as a weave game using only the trivial weave

&2-1 = {{d}|d € Di}’ GQi = {D;} for stages i, where player I is expected to

choose, and L j= {Dj}, quj = {{d}|d € Dj} for stages j, where player II

is expecteg choose. -
Let & = UEO@ OQ]@OQZQO e R=R, @ R, ®
CE{ 2 Q ..., and E =Dy x Dy x Dy x ...
Now we translate "“tensor product" into game terminology. A play of the
game I' is an element of 5. A finite play of the game I' is an initial segment
of some play. A strategy for player I (II) in the game I' is a function o (whose

domain is the set of finite plays) such that, for all <d0, e, dn>,

0(<d0,...,dn>) £ 412 n+1 ( (E3n+]). (We will use these terms in connection

with Gale-Stewart games also; see [3] for définjtions.) Given a strategy o,

let o be the set of all plays of I' that can result from player I's using the

strategy o throughout the game.
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Notice that ci: = {8[0 is a strategy for I in T'}. This is because every

-~ ~

fe1efose.>
set L in J:- is of the form LO 1072

whereLoe LO’ f]:LO-*oC],
f2 s L, ! +J:2, etc. So L = o0, where 0 is a strategy satisfying

o(A) = L0

o(<d>) = f.l(do) \ dj e L,

0(<d0,...,di>) = fi+1(<d0""’di>) \j <d0,...,d1> e L

Conversely, given any strategy o for I, define LO’ f1, sany T

~ <f]’f2’--.>
to the above equations. Then ¢ = Ly .

. ... accordin
i+1° g

~

Similarly, R - {;IT is a strategy for II in T}, (This is why we chose
to make I' a simultaneous-play game rather than a Gale-Stewart game. If we'd
made I' a Gale-Stewart game, this last C]aim would not have been true.)

Hé say that a game I with underlying set X is determined iff one of the

players has a winning strategy. This is equivalent to

- >
if
s
]
><

q o(strategy for I) 3Jt(strategy for II) s.t. g c X v

This in turn is equivalent to
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:3 [ € li 4 E € Cé. s.t. E C X v E o 5 - X.
Therefore <Ji, ,(ﬁi. > is ;}-normal, for some particular family of sets F., iff,
for every X in 3’, the game < OC,CR > with underlying set X is determined.
Next we reduce the problem further to.that of determinateness of Gale-
Stewart games. We consider a weave game T and create from it an "equivalent"
Gale-Stewart game r*.

The game I'*: At stage i, player I chooses a set Li in c[l i and then

player II chooses a set Ri in 02\.. Again, an element <d0,d],...> of D is

1

formed, and player I wins iff <d0,d],...> e X.

LEMMA 1.7: If player I has a winning strategy in I*, then she has a winning

strategy in r.

PROOF: Player I should play T using essentially the same strategy that she
uses to win r*,
Let o* be a winning strategy for I in r*.

Let <d0,...,dn> be a finite play of T. Choose LO’ R., L], RT’ IR Ln’ Rn
such that L. N Ry = {d;} for all i =1, ..., n. Define o(<d0,...,dn>) =

0*(<LO,R0,...,Ln,Rn>). (Notice that a "finite play" of I'* is an initial segment

of an element in OCO X @0 X £1 X ﬂ] X ... . This is the only

"difficulty" in applying a strategy for I in r* to the game T.)

Then o is a winning strategy for I in r'. Q.E.D.

I ———— e e—
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LEMMA 1.8: If player II has a winning strategy in I'*, then she has a winning
strategy in T.

PROOF: (Intuitive Idea:) Games T and T'* are essentially the same except that
player II seems to have an extra advantage in T* that she doesn't have in T -
that of know1ng, at stage i, what player I's move for stage i will be before
having to choose her own move for stage i. This turns out not to be an
advantage at all (because of the normality of < J: 1,(;2 1.>). For instance,

at stage 0, we let DOII be the set of all d in DU that players I and II can

form (jointly) as part of t* - a winning strategy for II in I'*. It turns out

that J R ¢ 6{0 s.t. R C DOII. In playing the game I, player II can simply

choose R at stage 0, without knowing what player I's choice for stage 0 will be.
(Details:) Let f be the function that maps the plays of I'* onto the

plays of T in the expected way (i.e. f(<L0,R0,L],R1,...>) = <d0,d],...>, where
L, N R, = {d;} for all i < w.) Let t* be a winning strategy for II in r*.

The set ™ is a II-imposed subgame (see [2]) of I'* in which all plays are
wins for player II. Therefore, f(;*) is a "subgame" of I in which all plays
are wins for player II. We will define a strategy t for II in T in such a way
that t C f(;*). (Note that since f(;*) is a closed set, we only have to
define T so as to make any finite E1azlof ; extendible to an element of f(7*).)

Thus T will be a winning strategy for II in T T.

Let DéI be the set of Oth entries of elements of f(t*). (I.e., Dél =

{dol(E]d],dz,...) [<dy.dy,dys...> € f(t*)]}.)

Claim: 4 R e@o s.t. R € D(I]I.
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If not, then by normality 3 L ¢ QCO s.t. L C IJ0 - Dél. This would

=imply that there is a move of'p]ayer I in T* (that of choosing the set L) that
forces the game out of ;*, contradicting the fact that ?* is a II-imposed sub-
game of I'*. |

So define t(A) = R.

Now assume that T' is in its ith stage, that <d0""’di-]> has already
beén played, and (hypothesis of induction) that <d0""’di-1> is an initial
segment of some element of f(7*).

Let D§I<d0,...,di_]> be the set of ith entries of those elements of f(;*)

edy o> =

that.have <dys...,d; ;> as an initial segment. (I.e., D£I<d -1

0’

{di1( 3 dyyq.diisenn) [<dgs---sd;_q5d55d5,05d5,55-0.> € F(T%)]}.) As before

1
E\Re&is.t.rz c D1¥1<d

R.

0""’di-1>' Define T(<d0,...,di_]>) to be this

~

Since 1t & f(1*), 1 is a winning strategy for player II in . Q.E.D.
Collecting the results of Lemmas 1.7 and 1.8, we have the following.

LEMMA 1.9: If I'* is determined, then so is T.

It is shown in [4] and [5] that any Gale-Stewart game T'*, whose underlying
set X is a Borel set (as a subset of 5), is determined. We therefore have, by
Lemma 1.9, that any weave game, whose underlying set is a Borel game, is

determined. Translating this back into the language of tensor products, we get

the following.
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THEOREM 1.10: Let <£1.,R1.> be a normal weave of Di,for' all i < w. Let
L-Ly oL, 8 L,0 ... 1ee®- R, ® R . Q

6{2 & ..., and let D = Dg X Dy x Dy x ... . Let X be a Borel subset of

-~

D. Then there exists a set L in OC such t.hat L € X, or there exists a set
. .

in R such that R < D- X
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SECTION 2: THE FUNDAMENTAL THEOREM OF NORMAL WEAVES

In Sections 2 and 3 we show that normal weaves can be represented as
trees. In Sections 4 through 7 we will present some applications of this
result and discuss other ideas concerning weaves versus trees.

Before we state the Fundamental Theorem we need some definitions.

DEFINITION: (1)0Q=,\/0C- & [- UOC.
(2) L = \/oQ & [- V.,C_ and Y i,je1ifizij,

iel iel

thenAlph( c[: .) N\ Alph( DQJ.) = P. (direct disjunction)

(3) OC A J:, <= ;f_— L= U Lss where L &1. for

iel iel

for each i ¢ I}.

(4)::(: /\oC & [ - /\cﬂ. andV,JeIlf1i‘J,

iel iel

then Alph( QE 1.) {\ Alph( CC J.) = 0. (direct conjunction)

(Let a be a letter, L be a set, and cf_ be a family. The expression
L v oC is an abbreviation {L} v .,C , and a v L. is an abbreviation for
{{a}l} v J: .)

LEMMA 2.1: (a) The set G is a ges for \/ L ; iff, for each 1y,

G "\ Alph( OC_T-O) is a ges for oQ-io.
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(b) The set G is a gcs for /\°C1 iff there is an i

gcs for cﬁ :

0

0 such that G is a

PROOF: (a) ==> : Assume that G is a gcs for \/ “’C-i' Choose i el
iel

For each L. ecf_. we have G ML, =1. So G M Alph( L. ) N L, =1.
iy iy i i iy

So 6 N Alph( L, ) is a ges for L, .
0 0

< : Assume that G M Alph( °C-i ) is a gcs for .
0

i (for each ige I).

Let'ileI,andletL1 € oCi. Then G M L, =GﬂA1ph(oC,i)f‘lL.,so
1 1

1 1 "

G r\_Li] = 1. Therefore G is a gcs for \/OC_ it

(b) = : Assume that G is a gcs for /\ “C ;- Then there is a unique

ig € I such that G M Alph( cﬁ,_i ) # 8. (To show uniqueness let G N\ Alph( oCi )
0 0

=ael;, ,and let G N Alph( J-.") = a' ¢ L.', where i #i'. There is a set L
i i i 0 0

0
in /\OQ j such that Li . L].' C L. Then a, a' ¢ G N L, which contradicts
0 0

the fact that G is a gcs for /\C'Q i‘)

Let L; € oa i . Find a set L in /\ DQ ; such that Li‘ C L. Since
0 0 0

G M L =1, we must have that G M L; = 1. Thus G is a gcs fOY‘oCi :
0 0

&= : Assume that G is a gcs for oﬂ (Notice that this implies, by

'iO'

definition of "gcs", that G /\ Alph( oC 1]) = I_E), for all other 1'] in I.) Let
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L € /\ cﬂ ThenL=L1. v, U L. . MsoG—ﬂ_LT=T,and

iel 0 el b 0
i) # i,

e UL1.T=EJ. SoGT /AT =1. ThusGisagcsfor'/\o{’\i.

LEMMA 2.2: (The conjunctions and disjunctions in this lemma are non- -trivial--

that is, when we write, for instance, oC \/ e£_ j» We assume that I > 1
iel

and oQ # P for each i.)

(a) Let = \/ DQ_ Then there is no collection { L .'} such
iel J Jed
that oQ /\ cL
jed
(b) Let J = /\ L Then there is no collection { Li'} such

Jed iel

that oC_ \/ aC_

iel

PROOF: Assume that cf- \/ OC and OC /\ OQ » and that both of

iel jed

these expressions are non-trivial.

Choose an i in I, and let OCT be oC]. Then oC = cC]V GCZ' Choose a j
in J, and let DQJ.' be °Q3. Then J_=. °C3A:£q Now A1p‘h(:£]) N A]bh(£3)
is non-empty. (Let L ¢ oC.1. Then L € L SolL = L3 v L4, where Ly e f_ 3
and L, € Jl 4+ Then L3 C  Alph( L]) M A]ph(iﬂ 3).) Let a e Alph( L ]) N
Atph( & 5).  Similarly let b e Alph( L o) N Aph( L )

Since a e Alph( L ]), b € Alph( OC 2) and L - cR] v cR o> there is no

set L in cﬂ such that a, b ¢ aC. . But since a € Alph( UC 3) and b € Alph( oC 4),
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there is a set L in oC such that a, b € DC (because we can let a ¢ L; and

belys thena, bely U Lye i .) This is a contradiction. Q.E.D.

LEMMA 2.3: (a) If L - \._'/cCi, then g(‘j;)=/.\g(£1.)_
) 18 L= A EL then G (L) - VG (L.

PROOF: This is a corollary of Lemma 2.1.
(a) Let OE = \/,ﬂ . A set G is a gcs for oC iff, for each 1'0,
G M Alph( °Q1‘ ) is a gcs foroc,i. This happens iff
0
G = U G M Alph( OC‘i)’ where G O Alph( °Q1') € /Q ( 0(.)1-), for each i g I.
iel (

This, in turn, is true iff G ¢ /\ g(cf 1-)-

iel

(b) The proof of (b) is similar. Q.E.D.
The object now is to prove the following.

THE FUNDAMENTAL THEOREM OF NORMAL WEAVES: Let :ﬂ be a normal weave. Then

either 0[:- = /\C’QT or °Q=. \/ oQ. i where, in either‘cas',e, L is

j
normal for each i (and the conjunction or disjunction is non-trivial).
The Fundamental Theorem was first proved by Gaisi Takeuti for the case

where the alphabet of OC is finite. It was proved independently, and the new

proof was expanded to cover the infinite case, as part of the research for

this thesis.
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Outline and Motivation for the Proof: Every weave is naturally a disjunction--

it's a disjunction of its sets:

L -1

oV LT vV ... V¥V L

where LO’ L], . L5 are the sets in ‘Ll - The problem is that this dis-
junction may not be direct. For instance, the letter a may appear in both L0

and L1. In this case we begin by “factoring out" a to get

aR(LévLi)szv...vL

In fact, we can find a gcs {a,b,c} and factor it out:

a;\(L['JVL]')vb;\(L'zv Lé)ch(L&vLé).

Now we would be done if the outermost disjunctions were all direct.

Unfortunately this isn't always the case. The families Lé v Li and
Lé v Lé may have letters in common. We must show that, in such a case, the
letters that these two families have in common can be factored out, and that

they can be factored out of both families in the same way.

{ax.(Lo Vi) v b/{(LélvlL;l)]A L5V ciyv Lg).
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Still the outermost disjunction may not be direct. We need an extra lemma

to show that sets of letters that Lc']' v L]" and L& v Lé have in common

can be factored out (Lemma 2.9).
Finally we must show that this process of factoring stops after finitely
many steps.

Now we begin the proof of the theorem.

LEMMA 2.4: Let S, T € Alph(Jdl ), SN T=p,and S, T # 0. Assume that,
for each G which is a gcs of L , either 6 € S or G C T Thengd_gf,)=

LS A OQT, where S = Alph( [0 s) and T = Alph( L ).

PROO?: Let QS be all gcs's of uﬂ that are subsets of S, and let 6)\ be
all ges's of 4L that are subsets of T. Let @ = G‘)S v @ Then

is the family consisting of all gcs's of L . By Lemma 2.3, Q(@) =

g((tls) A Q@R The famity Q(Q) is equal to 9Q(L). Let L
8 Rg)» and Tet JlT be %(QT). Then we have gg(u[l) =
TR

COROLLARY: If, in addition to the hypothises of Lemma 2.4, we have that o is

normal, then OC = OCS ~ °C‘T

PROOF:  If d_is normal, then Lemma 1.2 tells us that &L, < gg(ﬂ). Q.E.D.
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For Lemmas 2.5 through 2.8, let oﬁ be normal and let oC B

\/ (a; A Li), where {ai}i ¢ 1 is ages for OQ and, for each i # j,
iel .
a; ;ﬁaj.

LEMMA 2.5: (1) For any J €© 1, \/ (35 A Li) is normal.
ie] -

(2) For any i ¢ I, a; A °C‘i is normal.

(3) For any i €1, £1- is normal.

PROOF: (1) Assume that G is a gcs of \/ (ai A °C'1‘)' Consider G' =
ied

G U {a;]i £J}. The set G' is a cs for . Ssince L is normal, there
is a set G'' & G' such that G'' is a gcs for L . The.set G'' - {a;]i ¢ 3}

is a subset of G. It is also a cs for \/ (3, A o&.i), since {ai[i ¢ J} and
ied

Alph( V a; A oIli) have no letters in common. Also, since G'" M L < 1
ied

for each set L in dv s (G'" - {a;]i £J}) M L <1 for each set L in
\/ (34 /.\u[li). So G'' - {a,[i £ J} is a ges for \/ (a; A cC,.i).
ield

ied

Thus \/ (3; A OCi) is normal.

ied
(2) This is a corollary of (1).
(3) Let C be a cs for Li' Then C is a cs for a; A °C1-. So, by (2),

there is a set G & C such that G is a gcs for'aT- A oﬂi. But then a, £ G,

so (by Lemma 2.1), G is a gcs for °C1" Q.E.D.
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LEMMA 2.6: Assume that Alph( [ ) N Alph( 1) = C # 9. If G is a gcs
of >, and G N C # 9, then 6 N C is a ges of L. (Likewise, if G is

agcsofoE_ and G ﬂC#G,thenGﬂCisagcsofoc .).
1 0

PROOF: Let G be a gcs of OC o and assume that G M C#P. Consider G U {a; }.
This is a cs of aj NP T c[l-l, which is normal. So there is a
a gcs G' of ag A OC_ 0o vV { A 0R1 satisfying G' € G U {a]}. Since
3 £a, A ‘QO’ we must have that G' - {a;} is a ges for a, A CC—O‘ But
G' - {ay} C G, and G is also a gcs for 3, A OCO. So G' - {a;} =G (by

Lemma 1.1).

So either G' = G U {a]} or G' = G. The set G '{a]} cannot be a gcs
for a; A £0 voa, A L 1» since it contains both a; and letters in
Gf‘\ﬁ.(ELea] /(:C_] acsGﬂCs.t.ax,cEL.) So G' = G.

Thus G is a gcs for 2 N OQO v oo A oC,]. So G meets every set
in ay A arl] in one and only one place, and 2y £ G. So G meets every set
in oE] 1'n_ one and only one place. So G /M Alph( C,C]) is a gcs for OC].'

But 6 N Alph( &L ) =G M C. Therefore 6 M C is a gcs for L .. q.ED.

1

LEMMA 2.7: Assume that Alph( L ) N Alph( ;) = C # p. Then, for each

G which is a gcs of OQO’ either G € Cor G € Alph( oCO) - C. Similarly,

for each G which is a gcs of o ;, either 6 S C or G & Alph( L) - c
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PROOF: Let G be a gcs of oC 0 and assume that G M C # . Then by Lemma 2.6,
G M\ C is a gcs of OC]. By applying Lemma 2.6 to G /) C, we get that
(G M C) M Cis agcs of "C'D' So G M C and G are both gcs's chco.

So, by Lemma 1.1, 6 (Y C=6G. So G € C. Q.E.D.

LEMMA 2.8: Assume that ATph( dC o) (N Alph(dQ () = C # 9. Thendl |, =

OEE] A QCC and OC1 - oE]' A GCC’ where C = Alph( .

C)‘
PROOF: This follows by Lemma 2.4 and Lemma 2.7. Q.E.D.

LEMMA 2.9: Let d = [( L 1V L 2) A oCSJ v L 4+ Where oC'iS
normal and ‘LS is not a conjunct OfaC g4 Let Alph( L ]) M\ Alph( OC 4) =
C#p. Thenc C Alph(dl,). Mso, £, v L,= L A oCCand

E£ 4 = Uﬂ}\l XCQC, where C = Alph( "CC)'

PROOF: We will show that C € Alph( £2). The rest of the proof is similar

to the proofs of Lemma 2.6 through 2.8.

The family cC can be written in the form
(L AL vd, ALy v L,

Let G4 be a gcs for N 4 satisfying G, /) C # . Then as we have shown in

the proof of Lemma 2.6, G, is a gcs for aC]. '
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Let {33 be a gcs for 0C3. The set 63 V) 64 is a cs for oC. . Now
63 € Mph( L23), 6, < mpr( L), and L A L, s part of our
expression for oQ » SO, in order to obtain a gcs for oC ,» we must eliminate

(from Gy U G4) either all letters in G3 or all letters in Gye

Case(l) We can always eliminate Gy. Then every gcs for cf..3 is a gcs for

L 4. Let's = Alph(L5) and T = Alph( L) - Alph( L), and apply the
Corollary to Lemma 2.4.This gives us the fact oCB is a conjunct of OC4,

contradicting the hypothesis.

Case (2) We cannot always eliminate G4. Then there is a set G3' which
is a gcs for £3 and is not a gcs for .:,C
Let G, be any gcs for .,C4 satisfying Gy /) C # @. Then Gy U Gy is a

cs for L , and Gé is not a gcs for . » SO, since we have to eliminate Gé or

Gt‘l’ G"1 is a gcs for OI: .

Thus any set G,', which satisfies G,' /N C#49and is a ges for L 2’

is also a gcs for aCf. So G4' must be a gcs for ‘112 A cC.3. But

C M Alph( J:_a) = p. So G‘,l is a gcs for cf_z.

We have shown that any such set G, is a gcs for L 5. Thus

¢ < Alph( L ,). Q.E.D.
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LEMMA 2.10: Let J_ be of the form
Ly aMy) v Ly AMp v LA ol

Then OC_ is not normal.

PROOF: If cf_ is of that form, then oC can also be written as

(Lo & AW v Laa N Mov

0<i<w 1<i<uw

i A oy -

2<i<w

For each i satisfying 0 < i < w, Tet Ci be a gcs for M 1.‘, and let C be

U C.. The set C is a cs forcf_ .

0 ii < W 1
Assume that G € C, and G is a gcs for aQ . Then there is a unique 1'0

satisfying G N C, #09. (Otherwise we have c; eCy N G and
0

0 0
c; €Ci M G Let M) U MW s UM U M =
1 1" 0 'IO 'I-'
M e /\ }/]l j» where c; e M, andc; eM, . Thenc, , c1.' e G and
0<i<w 0 0 1 1 0 1

ciO’ Ci] e M, so G is not a gcs foroc .)

Thus by Lemma 1.1, G = C. .
0

Alph( OQTOH A /\ m ;) =P, so C; (and thus G) cannot be a cs

i tl<i<
gtl<i<w

i

But Alph( m-"o) N

0




"

26

for cQ +1 A /\ m .» contradicting the fact that it is a gcs
i . : i
0 igtl<i<w _

for OC . Therefore,cﬂis not normal. Q.E.D.

PROOF OF THE FUNDAMENTAL THEOREM: We give a procedure for working OC into
the form of a direct conjunction or a direct disjunction.

(I) Begin with L in the form

LO\(L]VLZ\/...VL\/...,

where the Li's are the sets in of. .

(IT) Choose a gcs {ao,a1,...} for cﬁ , and rearrange the L;'s so that

a e L

e L » d s e
0 UO 0 0-|

a,ely,a;el,, ...
1 10 1 ]]

So you have

(L0 v L01V ced) (L] v Lo cer) VeV

or

—.
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(a0 A cE,O) v (a] A C:CT) V oee. V (aB A cQ_B)..Y xnnyh®)

where QQ - }(/ (Lnk - {an}).

(IIT) Case (1) The alphabets of theoQ i's are pairwise disjoint. Then we
are done,

Case (2) Without loss of generality assume that

A]ph( OQ ) M Alph( OQ, ) =C#P. Rearrange the disjuncts in (*) so that

CLO’ S "Qa’ ««+s a <y, all have C in common; i-e-\,V/i N

(1,3 < v)» Alph( oC 'i) /M Alph( CC_J.) =2 C. Then by Lemma 2.8 we have

Lo= L' A L
L= L4 L

where C = Alph( o[ c)- So we have

or
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(g A L0 v @ &4 Ly v v 4 L
;UCC \‘(a.YA QE’Y)V .= @ (**)

(1v) case(1) No aCG, for any & > «y has any letters in common with

UE c Then the disjunction in (**) following OC C is direct because, by Lemma

2.9, no QCS, for any § > vy, can have any letter in common with any oCa', for any
a < y. Go back to the beginning of step (II11), this time working on the ch‘S for
i>y.

Case(2) Without Toss of generality assume that Alph( OC Y) M C =

; 1e¢q 7 *%*
K # 9. Rearrange and renumber the disjuncts in (**) so that OCY’ L 10

s OE_TT, ..., ™ < ag, all have K in common; i.e.,v i #‘j (g<i, io’),

Atph( ;) M Alph( J_;
Lo-L£0 4L,

OQY J:Y' }\QC.K

.) =2 K. Then by Lemma 2.8 we have

where K = Alph( oQ K). So we have



["'] /:CQCI ACEK ,V aY /; fya/;CCK V o cee v
a_ A q£1,& A JCL!< Voo Voa o e o£1.0 Y e,

or

) Adle viey ALy v v, ALy
;\cﬁ_Kv (ac,\-oﬁ‘g)y....

Now repeat step(IV) forrllé's such that ¢ > o.

We must show that we won't get stuck in an infinite Toop of applications of

step (IV) Case(2), because such a Toop could Tead to an expression of the form

Loty Al vy ALy v Ly A

which has no outermost connective. We will have more to say about this situation

later on. For now suffice it to say that this is impossible by Lemma 2.10.

This completes the proof of the Fundamental Theorem.
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SECTION 3: TREES

Before Tisting corollaries to The Fundamental Theorem we want to define
"decomposable" weaves and show how these decomposable weaves correspond to
trees. The Fundamental Theorem states essentially that every normal weave is
decomposable. We will distinguish between two different types of decomposable
weéves (stopped and continuing) and prove tree theorems for each.

The general idea of trees and decomposable weaves is highly intuitive,
but the formal definitions and proofs are rather messy. We've tried to simplify
the formalism, mainly by glossing over many steps (hopefully not at the expense
of clarity). The reader should feel free to skip any definition, or the proof
of any claim, that seems obvious, as there are no surprises in the formal

treatment.

Let < qﬁ s & > be a weave and let oC_= oC] V Lz. We can represent

this in the following form.

&L

L

We can also represent it using the corresponding alphabets.

ATph(L; ) ATph.)

Alph(l)
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Now say that OC] = .,C” v GQ]Z and ”E-Z = 0(\_2] A OC-ZZ'

represent this by

We can

L7 rQ.llz

JL2] °LZZ

|V
\/

or by cC.«

Alph(Ly;)

\/Alph(&zJ

Alph({;)

. ( ATph (L )ATph(r,,)

. A1Ph(u[.]) A]Ph(Lz)

\/

Alph(<)

We continue on in the same fashion. If we come to a "component" n[: 8 that

cannot be decomposed (perhaps because it's a singleton set), we write
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P o—r -
™ ™

e,

P’)<__

(or Tikewise with Alph( d[: B)). If we have a branch of Timit-ordinal Tength

(w, for instance)

\

A]ph(J:])

\

atph( 9)

then above the branch, on a node of level w, we put _fﬁ\ Alph( J:_l). (If
1< w

Y mph( L) # 9, we put (L A Y mph( LYy [ Le L3, 16

1T < w 1 < w

_f’ﬁ\ Alph( °£:1) =P, we put A. In this respect the tree of alphabets is

1T <w

much less complicated notationally than the tree of weaves.) And so on.
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We continue to do this until we reach a level y on the tree where no
"components" can be decomposed (i.e. all nodes become unbranching). We stop
building the tree at this level and call these nodes of level y the final nodes

of the tree.

The weave [~ is said to be decomposable iff all final nodes are labeled )
with singleton sets or with A. From now on in Section 3 we consider only %
decomposable families c{l . A branch b on the tree is called stopped iff its
final node is labeled with a singleton set. Otherwise it is called continuing.
If all branches on the tree for o[l are stopped, then C[: (and its corresponding
tree) are said to be stopped. Otherwise they are said to be contfnuing.

We adopt, for trees, some of the standard terminology for games. (See [3].)

Nodes that appear on even-numbered levels of the tree are nodes of even level

or nodes of even parity. When it is convenient we will refer to these nodes as

I-nodes, because we reserve these nodes as places where player I is to make a
choice. Likewise, nodes that appear on odd-numbered levels of the tree are

called nodes of odd level, nodes of odd parity, or II-nodes. A strategy for

player I (a I-strategy) and a strategy for player II (II-strategy) are defined

as in [3]. The set of I-strategies is denoted ZI and the set of II strategies
is denoted ZII' If 0 is a I-strategy, we let o be the set of all stopped

branches that o passes through (or, equivalently, the set of all final nodes not
<o ‘ -
labeled with "A" that o passes through). If } is a tree, we let | be the
set of all branches of dTﬂ.
AT1 of the trees that we deal with this section have final nodes. That is
to say, we do not consider trees with branches -of length A, where A is a limit

ordinal. The purpose of this is to keep the exposition as simple as possible,
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and there is no loss of generality in doing it. For instance, instead of

\ having a branch of ]éngth w, we have a branch of Tength w + 1, where the wth

node gets the labe] "A".

Now we need a detour to discuss "subalphabets" and "components". This

will make the proof of Theorem 3.1 easier,.

Consider a statement in the propositional calculus. The usual way to
define what we mean by a "subformula"

inductively.
of a statement.

DEFINITION: Let A < Alph( L ).
L™ A# g},

Then LM Ais {LNA[LeL

DEFINITION: Let A < Alph( L), The set A is a subalphabet of o iff

Vief VReg_(J:)[Lﬁ AZD A RN Agtp =

LM R < a].

PROPOSITION 3.1: If A is a subalphabet of L, then L1 A is a weave.

PROOF: Let d € A. Take a set R in g(,,{l) such that d e R.

The set R M A
is in g(oQ)I‘A,anddeR/\A

- So, for each d in Alph( LM A), there

is a set R' in 8( &) M A such that d ¢ R'.
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We need only show that R /) A is a gcé for LA LetLNA e £ A,

and Tet L/ A# 0. Also let RN A ¢ g (L) D A, and Tet RNA # 9. Then
by definition of a subalphabet, L N RS A, so (LNA)YN (RN A) = (LNR)NA =

LAR. Since LAR = 1, we have that CTORN N ROA) = 1. Therefore RN A
is a gcs for L M A. Q.E.D.

DEFINITION: Let A be a subalphabet of oﬁ. Then J4_T A is called a component

of oC

PROPOSITION 3.2: If A is a subalphabet of { and B is a subalphabet of L A,
then B is a subalphabet of [ .

PROOF: Let L e . and R ¢ g L) and assume that L N B # p and that R A B # .
We must show that L "R < B.

The set B is a subset of A, SOLNA2LNB # P and RMA2RMB # p.
Thus LNA e L. MAand RNA ¢ (&) ™ A In the proof of Proposition 3.1,

we showed that g(cﬁ) MA c g( P A). Thus RNA ¢ {j( 0 A). The set
B is a subalphabet of J_ A, so

Yiedra VR'egtocrA) [L'NB#D A RONBED —
L'/ \R' € B].

Thus (L MA) N(RMNA) € B. But (LAA)N(RANA) = (LAR)NA = LAR

(because LR < A, which, in turn, is true because L N A #0, RNA# P, and

A is a subalphabet of L ). So LR < B. Q.E.D.
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LEMMA 3.3: If Ai is a subalphabet of Jl for each i, then m Ai is a sub-
_ i

alphabet of oC .

PROOF: Let me\ Ai # P and Rﬂm A_i # 0. Then,for every i, LM Ai F
i i

and RHA]. # 0. Then (since Ai is a subalphabet of L. ), for every i,
LARSA,. SoLNR ¢ /) A;. Q.E.D.

1

DEFINITION: The set A is a direct subalphabet of o(’. iff both A and
ATph( {) - A are subalphabets of . .

PROPOSITION 3.4: If A is a direct subalphabet of L, then either

Vied (Lea. L< Alph( L) - A), or

Yre 'g(oﬁ) (RS A v REAIph( L) - A).
PROOF: Assume that there is a set L in JZ such that L NA # p and L - A £ P.
Assume also that there is a set R in 9(&) such that RMA # p and R - A# p.

Since LNAA # 0 and RNA #  we have that LARCS A, But since L - A # p
and R - A # P we have LN R < Alph( ) - A.  This is a contradiction. Q.E.D.

COROLLARY: If A is a direct subalphabet of & , then = La v Laipn(e)-a

or 38 (L) = °CA A OCATph(cE)—A’ where ATph(cCA) = A.
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PROOF:  Case(1) For every Linl , L € AorL < Alph(L) - A. Then oL =
oLy ¥ °CA1ph(oC_)—A'

Case(2) For every R in Q( L), REAor RSAIph( L) - A. Then (R =
R v R pion( £ yoar S0 by Lema 2.3 (a) JJEI=g(R) =GRy 4
g( Ratph( L )-a)- Let Ly be G(Rp)> and tet dly; 0y p be
Q (Rmiph(L)-a)- Q-E-D.

PROPOSITION 3.5: I A; is a direct subalphabet of o€ for each i, then (J A,
1

is a subalphabet of cf_

PROOF: Let Ai be a direct subalphabet of J for each i.

Case(1) Let oQ= UCAO N OCAlph( ‘E‘)'AO. Claim: For each i, o =

Y ‘L}fﬂph( £)-A.° Otherwise there is an i such thatg(o(l) =
i 1 )

&)Ai v &mph(oﬂ)-ﬂki' But by Lemma 2.3 we already have that g(i_) =
QAO A &A]ph( oQ)—AO and this contradicts Lemma 2.2.

So, for each i, we have cf_ = OCAi v "CMph(o&)-Ai' Tms means that,

for each L in & , either L < Ajor L & Alph(L2) - A, for each i. So, for

each L ind_ , either L < \UA; or L € Alph( &) - UA.. This makes A, a
direct subalphabet of oﬂ . This is because

(a) ifL A ﬂAi # 0 then L € ﬂAi’ SO

LA U 20 arA U, #9 = LR € UA;;
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(b) ifL-JA, #0 thenL C Alph(d2) - UA;, so
L-UR#8 A~ R=Un 8 > LR € Mph(L) - Un..

Case(2) Let g(cﬂ) = R V Q{ . This case is handled
Ay Alph( L )-A,

similarly. Q.E.D.

COROLLARY: If Ai is a direct subalphabet of oQ for each i, then (-\\ A'i is a
' i

direct subalphabet of oﬂ .

PROOF: Assume that A]. is a direct subalphabet of L for each i. By Lemma 3.3,
iqA]- is a subalphabet. By Proposition 3.5, {_J(Alph( OC_)—Ai) is a subalphabet.

So Alph(dL) - (mAi) is a subalphabet. Thus nAi is a direct subalphabet of

L. Q.E.D.

DEFINITION: A direct subalphabet, A, of OQ is called proper iff A # § and
A # Alph(L).

PROPOSITION 3.6: If 4 has a proper direct subalphabet, then L has a minimal

(by the inclusion relation) proper direct subalphabet.

PROOF: Let Ol be the family of proper direct subalphabets of oB . Order O

by the relation A1 < A2 iff A] =2 Az. The family al is non-empty. By the

Corollary to Proposition 3.5, every chain of sets in O( has an upper bound in

C( . Therefore, by Zorn's Lemma, (J( has a maximal element. Q.E.D.

-
.
.
i
-
#
¥
0
_
B
¢
¥
3
b
§
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The combined effect of these propositions is to show a correspondence

' between certain components of oe. and the weaves that appear on the nodes of
the tree for oC, The advantage of working with subalphabets rather than
components is that the only important relationship between subalphabets is set
inclusion (rather than conjunction, disjunction, and what would be a very
Clumsy notion of "1imit" for components.)

Now we can state and prove the following.

THEOREM 3.7: Let <dl,R_ > be decomposable and stopped (with R = g (L)).

Then £_ = {6]o is a I-strategy on the tree for {_ }, and (R_= {1t is a
II-strategy on the tree for [ }.

PROOF: (Remark: Many details of the proof are skipped.)

(a) LetL e .. We must define o by induction, so as to insure that,

for each node J ' in the range of o » Alph( ') ML # 9.

Stage 0: Assume that o = cﬂ] Vv c]lz. Assume without loss of generality

that L e dl,. Then let a(d) =L, since L e oy, LMY AIph(L ;) # 8.

Stage B: Assume, by the hypothesis of induction, that L ¢ Alph( [ 8) 0.

Let crL( 4 E3) be all and only successor nodes, oﬁiﬂﬂ, of UEB satisfying
L OV ATph( ol B*1) # . (1t can be checked that if 8 is of odd parity, all

successors of oC B will satisfy this condition, and if B is of even parity,

then one and only one successor of .J:__B will satisfy the condition.)
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We must show that éi = L.

2: For any g, let (SL)t1 be the union of all alphabets on nodes of level
o that appear in q - Since GL(cizs) is all and only successors, QL:T BF], of

B8 o
OC satisfying L/ Alph( QC_]-BH) # 0, we have, for any a, L C (.UL)cc'

Therefore L < GL (because Si = M) (SL)Q).
: a

C: Assume that d e Alph( ) and d £L. Letn be the node of Towest
level that is labeled with {d}. (Remark: At this point in the proof we must
recognize the distinction between nodes on the tree and their labels.)

| Case (1) The node n is a successor node. Let m be the predecessor of

n. Even if m is in the domain of q » We cannot have n ¢ ol(m), because

d}I N L=p. sonis not in the domain of 9 s and thus d is not in g .

(Remark: For any B, the alphabets on distinct nodes of level B are pairwise
disjoint.)
Case 2) The node n is a 1imit node. Assume the worst possible

Situation: that, for each predecessor node n, of n, we have that n, is in the
domain- of 9 - Then d is in SL. S0 we must show that d is in L. This is done

by the following important Temma.

LEMMA 3.8 ( The key lemma for subalphabets): Let AO - A] 2 iiiy ve. 2

AB 2 ..., (B< 1) be subalphabets of J . Let L be in and assume that

LMY Ag # 9 for each 8 < A. Let M) A 0. ThenL N (A #p.
B B<x B ' B<A P




This Lemma insures that, in our case, LM {d} # @, so that d is in L.

PROOF: Case (1) There is a set R in 3 (L) such that RN ) Ag 7 D.
B<A

Then, for each B < A, we have Lr‘\AB # P and RF\AB # P, so that LN R QAB,

for each . Since LM R =1 and the sets A, are nested, there must be a

B
letter a such that LM R = {a} and a € A, for each B. Thus a e L N M Ag
B<A

soL N m AB 7 D.

B<A

Case (2) For every set R in 8(42,), RN mAB = P. This is

B<A
;

impossible, because it means that no elements of mAB are in any good choice
" B<A

sets of o& , contradicting the fact that CQ. is a weave (condition (2)) and

: that /) A

8 is non-empty. Q.E.D.
B<A

This completes part (a) of the proof. Now we know that L c {310 is
a I-strategy on the tree for L 3.

(b) The map L - o s from sets in d< to I-strategies, is one-to-one and

onto. If Ly #L,, theno, #6, » s0 o # o, . Thus the map is one-to-one.
1 2 L, L, "L

Lo 1 2

For every I-strategy o there is one and only one set L in cﬁ satisfying

Ya (6), M L #8.

The strategy o is the im‘agé of L under the map. Thus oC= {3]0 is a I-strategy
on the tree for J }.
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(c) and (d) 1In a similar manner we can do constructions showing that

@ = {fcI'r is a II-strategy on the tree for 4. }. Q.E.D.

We have proved that every stopped decomposable weave can be represented

by a stopped tree. Likewise every stopped tree represents a stopped decompos-

able weave, and this is stated in the following theorem.

THEOREM 3.9: Let rbe a stopped tree, and let J[. = {Glc is a I-strategy on

T} and 6{= {:EIT is a II-strategy on 7 }. Then <.l ,® > is a stopped

decomposable weave, where [ = c?( R ) and @=Cg (L).

PROOF: (sketch) Properties (1) and (2) in the definition of weave are well
known properties of strategies for games. The proof that OC = g’ (R) and
that (f{ = 9} (L) is similar to the construction in the previous theorem.

If the tree begins with

3
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Here 0Q= ‘EO v DQ], where cf,o = {Slc is a I-strategy on Tthat requires
Player I to move to the left at stage 0}, and JC 1= {8[0 is a I-strategy on vT_
that requires player II to move to the right at stage 0}. Like wise, UC_O and

oCL] can be decomposed, and so on. Q.E.D.

COROLLARY: Let <L ,OQ. > be decomposeable and stopped, and assume that

O g (L), Then L -4 (R).
PROOF: Form the tree for((?as in Theorem 3.7. Then apply Theorem 3.9. Q.E.D.

Throughout this section we've been dealing with trees of possibly infinite
ordinal length. It might be helpful to give an example of a weave whose de-
composition involves more than w steps.

First we construct a weave o whose alphabet is 2¥ --the set of finite
séquences of zeroes and ones. The sets in L are indexed by Zw—-the Set of
sequences (of zeroes and ones) of length w. Let a e 2% and s e 2% The Tetter

a will be a member of the set LS if and only if a is an initial segment of s.

For instance we have the set

L<0,]’0’]?_.'> = {<0>, <0,1>, <0,1,0>, ...}.

Let 0E~<0> be the subfamily of J_ containing all sets LS such that s begins

With a zero. Similarly define ol .. Then <L - Lo © L 155 50 we

have




Thus
<0> = <0> A "+ Likewise °C<]> <I> A oﬂ" So we have
<0> ,C' <l> Q "
L<0> L<1s
L
The families do ' and L' can be decomposed in similar manner By con-
tinuing this Way we get the tree

This tree is continuing,

and the Jeye] of e
n A n

ach node that is not labeled with
is a finite ordinal.

(Notice that 41 is normal. )
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We can change J_ into [ * by adding a letter a* tg the alphabet, and

saying that a* is i Leo.o 0 > (and only in Leo 0.0 5)- The tree for

Jl_* is the same as the tree for L éxcept that it has a node Tlabeled with
{a*} at the wth level. This node appears at the top of the branch Pictured

below. ¢

<0>

(The weave L * is also normal.)

By adding to L a letter for each element of 2%, and putting each
Tetter at the top of the appropriate branch, we can turn L into a stopped
weave.

In order to get nodes of levels higher than w, we can add letters to L
in a more complicated form.  For instance, in our original definition of L

replace the set L(0 0.0 o bx the sets

L, =

17 50,0,0,...5 Y {asb},

LZ - L(O,O,O,..,) U {Csd})

L3 =-L50,0,0,...> U {a,c}, and

=L U {b,d}.

Ly

<0,0,0,...>




46

Then the tree for this new weave is

a d b
wth level ——>
1 ]
‘
<0,0>
.
<0 <1 *

Theorems 3.7 and 3.9 dealt with stopped weaves. The situation for continuing
weaves is a bit more complicated. Let <, > be a continuing decomposable
weave, where @= g (L), Fbrm T, the tree for o . As in the proof for
stopped weaves, every set L in L s equal to some 3, where o is a I-strategy
Tn“j—. But now not every ¢ is a set in .

For instance, let b be a continuing branch, and assume that there is a II-
strategy T such that T is in @, and T passes through b. Then there can be no
I-strategy o such that g is in L , and o passes through b, because if so, then
the resulting play (player I playing o and player II playing T) would be the
branch b, which has no non-empty label on its final node, so 8 M 1= .

A careful analysis will reveal some of the pattern governing strategies and
sets in & x .

Let < L2, R > be a decomposable weave with (R = Ei (Jl,). Forﬂljrl the
tree for cﬁ,. Let b be a continuing branch on cr-and label b with K ;

(1) "= 3 L, 3 R", if there is no I-strategy o such that 8 e’ and o
passes through b, and there exists a II-strategy Tt such that ; e(® and Tt passes

through b;

[=

(2) "3L,-3R" , 1f there exists a I-strafegy o such thato € L and ©

passes through b, and there is no II-strategy Tsuch thatT e® andT passes
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through b; or

(3) "= 3JL,—=TR" if there is no I-strategy o such that ; e, and o passes
through b, and there is no II-strategy t such that T e®R and T passes through b.

Notice that the discussion of two paragraphs above precludes the possibility
of having continuing branches Tabeled " J L, =3 R". We will show that no
branches can be labeled " — 3 L, — 3 R" either.

Let JZ' = {3] the only continuing branches that o passes through are labeled
"d L, 73 R"}. Let QR'-= {?|T passes through no continuing branches
labeled " J L, = 3 R" . IfLef , thenlL = g for some I-strategy o and
certainly cannot pass through a continuing branch labeled " — 3 L, 3 R", so
Le L'. Therefore L < L.

Now we must show that (' C g}_( L' < Ei ( ££). The second inclusion
follows from the fact that L S L'. Let R' ¢ (R'. Then R' = 7, for some
that doesn't pass through a continuing branch labeled " 3 L, — 3J R". If
Led, thenlL = ;, for some o that passes through no continuing branches
labeled " = 3 L, 3 R" or " =3 L,— 3 R". So the play resulting from
o and T must be a stopped branch. So g 2R T is non-empty. So G N 1T is a
singleton. So R'(ML is a singleton. Similarly, if L' ¢ JL's then R* M L'
is a singleton.

Now we want to show that gl( L) C R'. Assume not. Then there is a
set G in é}( L) such that G ¢ (R.'; i.e, G is equal to T, and T passes
through some branch labeled " é} L, = 3 R". Choose a set L {n 08 such that
L=gandg passes through that branch. Then the play resulting from ¢ and
is that branch, so ¢ M T = p. Thus L /Y G = P, so G is not a gcs for J:..

This is a contradiction. Therefore (R ' = é}l(Jl') = é} (L).

To prove that Jg = L', we need a construction similar to that in the

proof of Theorem 3.7 and a demonstration that the map L > 0. is onto the set
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of I-strategies o that satisfy the condition given in the definition of JZ_'.
The details can be recovered from the proof of Theorem 3.7 and so will be
omitted.

To summarize what we have done thus far, we begin with < L ,R_ > and
use it to form the tree aT-. We label some branches with "3L,-3R",
meaning that they are off limits to II-strategies T, whose T is in CEZ, and
that they are to be used by some I-strategies o, whose G is in o .

It turns out that Jl is equal to the set of all ¢ such that o passes
through only these continuing branches labeled " qL, - 4 R",'and that
CQ\ is equal to the set of all ? such that t passes through none of these
branches.

Notice that we didn't have to say that, in order for T to be in GQ s T
must not pass through a branch labeled " — 3 L, — 3 R". This means that
if T doesn't pass through any branches labeled " I L, 7 3 R", then it
doesn't pass thru any branches labeled " — J L, — I R?.

So let b be a branch labeled " — 3 L, —= = R". We will show that there
is a node n on b such that every I-strategy o, starting from n, passes through
a branch labeled " — 3 L, 3 R"or " — J L, — 3 R". Assume otherwise:
that for every node n on b there is a I-strategy o starting from n that passes
thru no branch labeled " — 3 L, dR'"or"—- 3L, - 3 R .Using this
information we will construct a strategy o* and make sure that it passes through

no node labeled " — 3 L, d R" or "~ = L, = 2 R" other than b, and it

will pass through b.

To cohstruct ao*, ]et_x0 be the initial node of the tree, and define o* on

Xg S0 that o*(x.)} is a node on b. (Let c*(xo) = k.) Let ny and n; be the

XO}
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direct successors of k, and assume that Ny is not on b and n is on b.

Since there is a I-strategy o starting from k that passes through no node
labeled " = 3 L, I R"or " — I L, — I R", we take the part of o that
passes through no and attach it ontoo* (i.e., the strategies o* and o are

the same from ng on.) As for ny» define o(n]) so that o(n]) is a node on b.

Continue by induction.

Now this strategy o* 'violates our promise that every I-strategy passing
through a "— I L, —= I R"--branch must pass through at least one
"= 3 L, 3 R"--branch. So we have a contradiction. Therefore, there is
a node n on b such that every strategy o starting from n pas.ses through a
branch labeled " — 3 L, 3 R"or " - 3 L, 47 3 R".

i_et A be the subalphabet of ATph(£ ) that is used to label this node n.
For every set L in OC, s LM A =0, because, for every o satisfying e OC, "
o does not pass through n. So the letters that appear in A are not in
Alph( £ ). This is impossible.

Therefore, there is no branch b on the tree for . such that b is Tlabeled
"= 3 L, 7 3 R".

From the above discussion we extract the essential parts of the proof of

the following theorem, which is a tree theorem for continuing weaves.

THEOREM 3.10: Let T be a tree with every continuing branch labeled either
"AL, =3 R"or" =3 L,3 R". Let L = {Sla is a I-strategy that

passes through no branches labeled "= F L, I R"}, and let 62= {t]t is a

II-strategy that passes through no branches labeled " 3 L, = 3 R" . Then

<&, R > isa decomposable weave, where J = g( @) and R = (@ (L),

Conversely, every continuing decomposable weave comes from such a tree.
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From now on, when we say "Teth' be a continuing
every continuing branch oncT-is labeled with either
" 3 L, — 3 R".

We end this section with a definition.

a—.-l
DEFINITION: For a continuing tree | , a I-strategy

passes through no branches labeled " — 3 L, 3 R".

admissible iff it passes through no branches labeled

tree", we will assume that

"3 L, 3R or

is called admissible iff it

A II-strategy is
“qd L, = d R".
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SECTION 4: STATEMENTS

In this section we show how certain weaves can be represented by (certain)
statements in logic. We will use the propositional calculus, the infinitary
homogeneous predicate calculus, and the infinitary heterogeneous predicate
calculus.

Let ¥ be a statement in the propositional calculus, using only the connect-
ives A and v, and let no atomic formula occur more than once in y. It can
be shown that ¢ represents a normal weave. For instance, let y be (a v b) A
(c v d). Using the associative Taw, we can write ¢ in the form (a A c) vy
(@A d) v (bac)v (b A d). This represents the family {{a,c}, {a,d},
{b,c}, {b,d}}. Let this be Jl_. By reversing the connectives of Y we get
(@ A b) v (¢ A d), which represents {{a,b}, {c,d}}. Let this family be x .

Notice that R = g(oQ),and L= g(@).

THEOREM 4.1: Let ¢y be a statement in the propositional calculus, using only
the connectives A and v , and let no atomic formula occur more than once in
Y. Then y represents a normal weave 41, where A?ph(cll) is finjte, and the
dual of ¥ represents %?( L ).

The proof is by induction on the number of connectives in y.
The converse of Theorem 4.1 is given by the Fundamental Theorem of Normal

Weaves. Let JL be a normal weave with ATph( ) = n, where n is a finite

number. If n =1, then dz,= {{a}}, so L is represented by the statement a.
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Ifn>1, the_n, by the Fundamental Theorem, we have that oC= (Q-! v nﬂz
or o[’ = £] A GQ 2 where qQ] and oQZ are both normal. By the hypothesis

of induction, we have statements u,b] and wz to represent £] and °€-2= and so

(tp] v b (or Yy A wz) represents QQ

THEOREM 4.2: Every normal weave UC » where Alph( °€) is finite, can be

represented by a statement in the propositional calculus.

What if Alph(Jl ) is not finite? Let y be the statement

! XgXy --- \;fyP(y,xO,x],...) in the infinitary homogeneous predicate calculus.

We cén rewrite ¥, roughly, as \/ \/ /\ P(y,xo,x],...). This
X X y :
0 1

represents the weave OC - {{P(bo,ao,a],...), P(bl,ao,a],...), veols {P(bo,a['],a]',

), P(b1,aé,a]',...), S SR 9

Here bo, b], ... are all possible values of y, and a[')'...', a]"...', ... is

taken to be a sequence of values for Xgs Xy ee -

THEOREM 4.3: Let ¢ be a statement in the infinitary homogeneous predicate
calculus, using only A , v , V , and 1 , and let no atomic formula occur
more than once in y. Then y represents a normal weave Uﬁ , and the dual of y

represents %( cﬂ ). Every branch on the treé for g(’_ is finite.

PROOF: Define the complexity of a statement as follows.
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(1) If y is atomic, then c(y) = 0.
(2) If yis y; v gy or g is y; A Yy then c(y) = c(yg) + c(y,) + 1.

(3) If ypis \{xo \/ X7 '{(xo,x],...) or y is on 3 X1

%xo,x],...), then c(y) = ;2__ c(w(xo,x],...)) + 1.

XO,XI,..-

The theorem is proved by induction on the complexity of y. Here we prove
only that every branch on the tree is finite.
If ¢ is atomic, then the tree for QQ consists of one point, so we are

done.

If y is y; v q;'z, then the tree for y is of the following form.

By the hypothesis of induction, all branches on this tree are finite. If p is

V1 A Uy then the tree for y is of the following form.

A11 branches on this tree are finite.
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If y is_iﬂxo :3 x1 "'?}TXO’XE":{)’ then the tree for v is

.
N
Q

By the hypothesis of induction, all branches on this tree are finite. Similarly,

for \V/xo \&/ LSRR HTxo,x],...), all branches are finite. Q.E.D.

THEOREM 4.4: Let | be a tree, and let all branches of 7 be finite. Then Tis

represented by a statement in the infinitary homogeneous predicate calculus.

PROOF: To each node on the tree we assign a statement.
To each final node assign a distinct atomic statement.

Let wo, w], ... be assigned to the successors Ng> Nys -ee of n. Ifn is a
node of even parity, assign the statement \/wi to n. If n is a node of odd
parity, assign /\QH to n.

By continuing in this way, we assign a statement to every node. For if the

initial node, X is not assigned a statement, then there is some successor
node, X5 of Xy that is not assigned a statement. Likewise there is a successor,

X5, Of X that is not assigned a statement, and so on. By continuing in this

way we create a branch Xq s X]s vees X whose topmost node is not assigned a

statement. But this is impossible.
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We can now rename the atomic statements so that the statements thus
assigned are part of the infinitary homogeneous predicate calculus. The

tree is represented by the statement that has been assigned to the initial

node. Q.E.D.

If every branch ofT is finite, thenTis stopped. This is-also the

Case with statements in the infinitary heterogeneous predicate calculus.

THEOREM 4.5: Let ¢ be a statement in the infinitary heterogeneous predicate

calculus, using only A , v , \/ , and J, and Tet no atomic formula occur
more than once in Y. Then ¥ represents a decomposable weave J:_, and the

ual- of ¢ represents . e tree for 1s stopped.
dual of t (£). Th for i d

PROOF: We define the complexity of a statement ¥ as before, and show by

induction that the tree for y is stopped.
If ¢ is atomic, then the tree for y consists of one point.

Let ¥ be of the form \/QH (or x5 3 X7 «ee ¥(xgoXq5...)).  The tree for

¥ is of the following form
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By the hypothesis of induction, the trees for wU’ V15 ... are all stopped, so

‘ this tree is stopped.

Let y be of the form 3 Xq \/ X] B Xp wee ¥(XgaXpaXye.).
Then the tree for ¢ is of the following form.
o o) A
.- ot .-
{e?' N (e?' o\

«
nodes of
Tevel w

For each sequence apys 2ps ..., the tree for W(ao,a],.;.) is stopped (by the

hypothesis of induction) so the tree for ¥ is stopped. Q.E.D.

Let QE, be the weave given in the 3rd paragraph on page 43. The tree for

this weave is continuing, so this statement cannot be represented by a statement

in any of the languages used in this section.
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SECTION 5: THE p,q-THEOREM

In this brief section we present an application of the theorems which
state that certain weaves can be represented as trees. The P, g-Theorem was

first proved by Gaisi Takeuti using different methods.

Let <, R > be a decdmposab]e weave, where (R_= g (L), and Tlet GT-
be the tree for Jl,. Let p and q be letters in the alphabet of Jl,.

Cdrresponding to p and q there are two (distinct) branches bp and bq on T
such that the final node of bp is labeled {{p}}, and the final node of bq is

Tabeled {{q}}.

DEFINITION: Let n be a node on 7ﬂ . We say that p and q part company at n iff

n is the node of highest level that is on both bp and bq.

LEMMA 5.1: The Tetters p and q part company at a node of odd parity iff there
is a set L in 41 such that p and q are in L.

PROOF: The proof is given for continuing weaves. A simp]ificdtion of this

proof can be used for stopped weaves.

= : Assume that p and q part company at n, a node of odd parity. Since

p and q are in Alph( /2 ), there are admissible I-strategies o_ and o_ such that

p q

bp € Gp and bq € Sq. Let n' be the successor of n that is on the branch bq'

Let o be the same as Up except at n' (and above). At the node n', attach that

part of oq that begins at n'.
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pass through no

Since op and oq are admissible I-strategies, op and o

q

branches labeled " - 3 L,3 R". Thus o passes through no branches labeled
"-4d L, A R'. So o is an admissible I-strategy. Notice also that

b,b eo. Therefore, o represents a set L in J. such that P, q € L.

P’ q
<: If p and q part company at a node of even parity, then no I-strategy

o passes through both branches I:p and bq. Q.E.D.

LEMMA 5.2: The letters p and q part company of a node of even parity iff there
is a set R in 0{ such that p and q are in R.

The proof is similar to the proof of Lemma 5.1.

THEOREM 5.3 (The p,q-Theorem): Let & be a decomposable weave, and let p and
q be in Alph(J ). Then either there is a set L in £ such that p, q e L, or

there is a set R in & such that p, q € R.

PROOF: The letters p and q must part company either at a node of even parity

or at a node of odd parity. Q.E.D.
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SECTION 6: TENSOR PRODUCTS

In this section we reprove a special case of Theorem 1.70 using tree
methods. In fact, the nature of tensor product becomes transparent when we
examine its meaning in terms of trees.

We begin with a definition.

DEFINITION: Let cf} and [, be trees. If any branch of GT} ends on a node of

odd parity, add one more node at the top of that branch (so that every branch

——

of ”T} ends on a node of even parity). The tree TT} ® ‘] » is formed by adjoin-

ing.a copy of GTE at the top of each stopped branch of OT}.

Translating this into the language of Togical statements, we get the

following type of definition.

DEFINITION: Let ¥y and ¥y be statements in the propositional calculus, using
only A and V , such that each atomic formula occurs at most qnce in ¢] and
at most once in wz. The atomic formulas of wi ® wz will be ordered pairs of
atomic formulas of w] and wz.

Define w] X wz by double induction.

If ¥ and b, are atomic, let ¥ ® ¥, be the pair NAE Vo>

If y; is atomic, let y; @ (67 v ¢,) be (y; ® ¢9 v (y; ® ¢,)s and let

B (o7 & 6p) be (Y & 97) A (4 ® 9,).
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07 A Bps Tet g ® yy be (6; ® ¥y) A (6, @ y,).

Let oC] and °C‘2 be decomposable weaves, and let 7—] be the tree for CC]
and 7‘2 be the tree for oEza For simplicity of exposition we assume for the

moment that QC] and “CZ are both stopped. Let L € oC} @ °C2‘ Then L

A

is of the form L]f, where L, € DC,-,, f:l, > f_z, and L1f = {<a,b> | a ¢ Ly

b e f(a)}.

a . .
Each branch on the tree 07-] @ f o 15 actually a pair of branches--one

branch from °'{"'] and the other from Tz. A I-strategy on the tree 711 ® Tz is

obtained by choosing
(1) a I-strategy oy in DT}, and
(2) a I-strategy o, of ﬁré, for each branch a in o;.
So 81 € ilq, and we have a function from 31 into the set of I-strategies
of 07——2.

~ f
The set cr]f is a I-strategy of ‘7_] ] 7—2. It corresponds to the set L

of cQ] © CQ’Z' This gives us the following proposition.

PROPOSITION 6.1: If T is the tree for o, and T, is the tree for L.

then T] Y OTZ is the tree for oE]@’ 412.

2’

For the case where either oQ] or vez is continuing (or both are continuing)

we replace, in the above explanation, the word "branch" by the words "stopped
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branch", and replace "I-strategy" by "admissible I-strategy".

We have an immediate corollary.

COROLLARY: If OCT and °C2 are decomposable, then so is CRT @ cf,z.

Now if CCO’ cﬁ 1° £2, ... are represented by the trees ‘7-0, dT'],

“r s e respectively, each of which has only finite branches, then the

tensor product of these trees is of length w and thus is Borel normal (by
the result in [4]). In this case "Borel" refers to subsets of branches on

the tree ®OT1 . In order to say that ® of’\i is Borel normal we must
i i

PN
account for subsets of T Alph(cCi). Fortunately, these two sets ( ®T1
i i

and I_IA1ph(£1.)) are isomorphic, and their open sets correspond to one
i

another under the isomorphism. So we can conclude the following.

THEOREM 6.2 (special case of Theorem 1.10): For each i < w, let < L R o>
be a normal weave of Di , and let the tree for aﬁi have only finite branches.
et L =L@ L BL, B L1t ®R-ROR OR,B ...,

and let D = D0 X D] X D2 X ... . Let X be a Borel subset of D. Then there

~

exists a set L in [0 such that L S X, or there exists a set R in (R such

that R £ D - X.

If we do not assume that the trees cro, CT], ... have only finite branches,

then we can use Theorem 1.10 to get a result about trees. The theorem states
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-that whenever (f 0° £ 1> -+ are all normal, then ®£1 is Borel normal,
i

where '"Borel ™ refers to subsets of the set I A]ph(ﬁ_q- ). Each letter in
.i
A]ph(cﬁi) is actually a branch on the tree 7_1- . So I mph(oﬂi) is the
i
same as the set II‘T1 We cannot say for sure whether this set is

1

topologically equivalent to the set of branches on ® 'T . So instead of
i i

a theorem for Borel sets of branches we get the following.

THEOREM 6.3: If | o, ] ;, ... are normal, then the tree To ©°T,0...

is F -normal, where 3— is the family of all Borel subsets of 1,171"
i
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SECTION 7: CROSS SETS AND GENERALIZED TREES

In the proof of The Fundamental Theorem of Normal Weaves, the full
strength of the normality assumption was not used until the proof of Lemma
2.10. Before Lemma 2.10 we used arguments of the following sort:

“Choose a particular set C. This set C is a choice set for Jl but not
a good choice set because

(1) a and b are both in C,

(2) a and b 'clash' (that is, there is a set L in ll such that a and b
are both in L, so C is not a gcs), and

“(3) if either a or b are eliminated from C, then the resulting set is
no longer a choice set."

In the proof of Lemma 2.10, the set C that we chose was one where we had

a collection of letters my> m], Mos «ens where, for each i, m. clashed with

Mys Mys wees My 9o Meygs Mayss ... . To eliminate the clashes we had to remove

not one letter in a pair, but a whole sequence. In this case, unlike the one
in the paragraph in quotation marks, removing one letter at a time was safe

(i.e. we still had a choice set) but removing the whole infinite sequence of

1etteré was not safe.

We define a condition that is weaker than normality.

DEFINITION: The weave [ is pre-normal iff, for every cs C, if a and b are in

C, and there is a set L in J: such that a and b are in L, then either C-{a} is

a cs orC-{b} is a cs.
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Any normal weave is pre-normal. The converse is not true. For example,

let Jl be the collection
{so,po,p1,p2,p3,...}
{S15P15PpsP35. .0}

{52’p2’p3""}

and 1et GQ be
{po,s],52,53,54,...}
{p1,52,53,54,...}

{p2’53’54"'°}

Then < £, R > is a pre-normal weave, but it is not normal. Notice how this

example Tooks when represented as a statement and as a tree. As a statement

it has the form
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[+ (((((sg a P) v 57) A Py) v ) A By) v -..],

which has no outermost connective. (That is exactly what we wanted to avoid

with Lemma 2.10.) As a tree it seems to be represented by the following.

This tree is not well-founded. It seems as if The Fundamental Theorem is
proving two things about normal weaves--that they are decomposable, and that the
decomposition is well-founded. We can look at this in the language of games.
It suggests that what we call "determinateness" is not one propérty, but actually
two properties--decomposability and well-foundedness. Certainly well-foundedness
comes into play in determinateness because, in a Gale-Stewart game, determinate-
ness means that, in any choice set of I-strategies, the clashes between plays
in this choice set can be eliminated in a well-founded sequence.

Unlike the property of normality, the property of pre-normality can be

viewed as a very "local" property of the weave, as is shown in the following

set of definitions and lemma.
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DEFINITION: Let J_ be a weave, and assume that there is a set L 1in <[: such
that a, b € L. Let Lys Ly € L ,and let a ¢ Lys bely, atf L,> and b £ L,

Then <a,b,La,Lb> is called a crossed quadruple of Jl .

DEFINITION: Let <a,b,L_,L > be a crossed quadruple of L . The set X is a
cross set for <a,b,La,Lb> iff

(]) XE Lau Lb-{a,b},

(2) xNM L, # 9, and

(3) XML, # 8.

An example should illustrate the idea more clearly. .Let L be {{x,y,a},
{a,d,b}, {b,u,v}}. Then <a,b,%&,y,a}, {b,u,v}> is a crossed quadruple of
and {x,y,u,v}, {x,u,v}, {x,y,ul, {x,y,v}, {y,u,v}, {x,u}, {x,v}, {y,u}, and

{y,v} are all cross sets for <a,b, {x,y,a}, {b,u,v}>.

DEFINITION: The weave Ji is said to have cross sets iff, for every crossed

quadruple <a,b,La,Lb> of il » there is a set X in [ such that X is a cross set

of <a,b,La,Lb>.

Notice that the weave presented in the example above does not have cross
sets. Notice also that {a,b} is a choice set for il » but that neither {a} nor

{b} are choice sets for 4:'. Thus Jl.is not normal.

PROPOSITION 7.1: A weave <£l is pre-normal iff it has cross sets.
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PROOF: —> ! Assume that L does not have cross sets. This means that there

is a crossed quadruple <a,b,La,Lb> such that no cross set of <a,b,La,Lb> is in

L. LetC = [Alph( L) - (La W Lb)] ) {a,b}. We claim that C is a cs for

J:, but that neither C - {a} nor C - {b} is a cs for o[ .

(1) We show that C is a cs for L . Llet L e L. The set L is not a

cross set for <a,b,La,Lb>, so either
i) x ¢ L U L, - {a,b},
ii) X M L, =0, or
(ii) x /M L, = 2.
If x_gt L, W Ly - {a,b}, then either

(i.1) aeXorbeX (in which case L /™ C # @, because a, b € C), or
(i.2) X & L, W Ly (in which case L (™ C # p) .

SoL M C#P. IfL M La # @, then either
{i.1) L < Ly (in which case L = Lys by Lemma 1.1, sobe L, soL /M C # p),
or
(i1.2) L & Ly (sothatL ¢ L, U L, so, as before, L M C # ).
Similarly, if L/ Ly =@, then L /™ C# 9. SoC is a cs for & .
(2) The set (C-{a}) M L, is empty, soC- {a} is not a cs for L . The set
(C-{b}) M L, is empty, so C - {b} is not a cs for [ .

Therefore [ s not pre-normal.

& LetCbeacs, leta,beLe L . Assume that C - {a} is not a
cs of L and that C - {b} is not a cs of L.
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Since C - {a} is not a cs of i:,, there is a set La in Jl such that
(C-{fa}) M L, =8 (but C /M Ly # p). Thus C M L, = {a}, but since b is
in C - {a}, b is not in Ly
Similarly, there is a set Lb such that b ¢ Lb but a ¢ Lb. Thus <a,b,La,Lb>

is a crossed quadruple.

Now C - {a,b} € C - {al}, and (C-{a}) M Ly = 0, so (C-{a,b}) M La = .
Similarly (C-{a,b}) M L, = 0. So (C-{a,b}) M (La\J Lb) =f0. So
C N [(LaLJ Lb) - {a,b}] = . So there is no set X in L satisfying X g;[(Lak) Lb)
- {a,b}] (since C is a cs for.l: ). Thus the crossed quadruple <a,b,La,Lb> has

no cross set in il. Q.E.D.

Checking for cross sets is usually easier than checking for pre-normality.
In fact, in a Tater section, we will give visual meaning to add to our intuitions
about cross sets. Also we will use cross sets to show that the weave Ji =
{{a,x}, {a,d,b}, {b,y}} is a very important counterexample.

If we assume that < has cross sets, and try to prove The Fundamental
Theorem, we succeed until we reach the point of Lemma 2.10. Without Lemma 2.10
we get "trees" tHat aren't necéssari1y well-founded as in the f}gure on page 65,
This leads us to the question "What new kinds of trees and games can we define?"
We present an interesting example.

The alphabet of Jj is ﬂg 20 U ﬂ;f 2-O——two copies of the set of all

real numbers greater than or equal to zero. Let Jl be all sets of the form

{r}u{g]s<r},
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>0
where r ¢ ﬁz . Then (;z must be all sets of the form
{s} U {r| r<s),
>0
where s ¢ (K~ » plus the set

- <0
{s]se R 1.

If we try to make a tree to represent this weave, we come up with

Here, for each r in HQ‘EQ, we have a pair of branches extending from the back-
bone. In each pair, the node directly below r is taken to be a I-node, and
the node directly below r is taken to be a IT-node. The set {r} J {S| s < r}
is represented by the I-strategy in which player I decides to turn off the back-
bone only at the node directly-below r. |

Not only is this tree not well-founded--it doesn't even present a discrete
order of play. The problem here is that finding a generalized definition for
"tree" and "strategy" seems to be very difficuit. We would like to see such
notions défined. Also we would like to see a theory of continuing trees, such
as that developed in Section 3, also developed for trees of this generalized

type.
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SECTION 8: A DETERMINATENESS LEMMA

In this section we take a brief detour to look at the determinateness
problem from a different point of view.

We begin with a stopped tree 'T'. (For our examples, and for the proof of
the lemma, we will use a binary tree, but everything we say holds for any tree
with the property that the successors of eagh node form a well-ordered set.)

Let ZI be the set of all 8 such that o is a I-strategy on 07“, and Tet E be

II

the set of all 1 such that T is a II-strategy on 67'. The pair <£I, ZII> is a
decomposable weave, and, as usual, I = gL(ZII) and I, = é;(zl). A set X

of branches on 07-15 called indeterminate iff there is no I-strategy o such that

~

o & X, and there is no II-strategy T such that t ¢ “] - X. Rephrasing this

in the terminology of weaves, we get that X is indeterminate iff X is a cs of

EI’ and there is no X' € X such that X' is a gcs of Iy
What does a cs of EI Took 1like on the tree? First of all it is a subset

of the set of all branches. Say, for example, the tree begins with

11
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and we want to form a c¢cs X on it. At least one branch of X must pass through

either ng or n (otherwise X = P). Furthermore, there must be branches b0 and
b] in X such that
(1) bO passes through Ngg> and b] passes through Ngps OF

(2) bg passes through nyg> and by passes through'n]1.

This follows from the fact that X is a cs of ZI. We can continue in this way

to identify sets of nodes that seem to be forming a II-strategy.

The question is, "What can go wrong?" In the finite levels of the
construction we are forming a set that has great promise of becoming a II-
strategy (with possibly other branches added). After taking away the other

branéhes, we should get X', a II-strategy, and thus a gcs of EI. It Tooks as

if we're proving that, for every cs X, we can find a gcs X' & X. But since
indeterminate sets exist, the set that we're forming must, in some instances,
be less than a II-strategy. There aré two things that might possibly be going
wrong.

(1) In the construction of X, some branch b seems to be going into X
because all the nodes on b are becoming part of X (i.e., are nodes on branches

that are in X) but, in fact, b is not in X. This is the case with the binary

tree and the set XO’ where XD is the set of all sequences of zeros and ones
except the sequence <0,0,0,...>. The branch <0,0,0,...> "seems" to be in Xgs
because all of its nodes appear on branches that are in XO’ but actually
<0,0,0,...> is not in‘XO.

More precisely, let Y be any set of branches on 07_. Let Y* be the set

of all branches b on cTsuch that every node of b appears on some branch b' of
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Y. The set Y* is called the completion of Y. It could be that, in forming a
ycs X, we will find that X* contains a II-strategy but that X does not. (Notice

that in this construction we only said which nodes had branches bO’ b], of X

passing through them, i.e., for which nodes n there exist branches bO

00° "o1

and by of X such that Ngg is on bD and n,, is on b1.)

01
(2) The other thing that might possibly go wrong is that, although X*
(if not X) has, at each finite stage in the construction, a subset which is a
II-strategy for the tree up to that stage, it might not have such a subset
after infinitely many stages (i.e., when the construction of X is finished).
The purpose of the following lemma is to show that (2) cannot happen.
The set X* will always have a subset which is a IT-strategy. This means that
if X is an indeterminate set, it can only be because there are branches b in
X such that every node of b is on some branch b' that is in X, but b itself
is not in X. Looking at it from this point of view, it becomes clear why "open
sets" is the first proposal in trying to guarantee the determinateness of a set.
It is hoped that this point of view will generate other directions besides the
Borel hierarchy for guaranteeing determinateness. For instance, these "bad"
branches that seem to be in X (but really are not) are analoguous to inadmissible
strategies on continuing trees.
This notion of the completion of a set is used in the next section to attack

another problem.

LEMMA 8.1: Let FTv be a stopped binary tree. Let EI be the set of all & such

that o is a I-strategy on GT‘. Let X be a cs for Z1- Then there is a subset

Y of X such that Y* = t for some II-strategy T.
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- PROOF: If Z is a set of branches, and n is a node, we will say that n is on
\Z iff there is a branch b such that n is on b and b is in Z.

Let G7Fi be the tree of all nodes of irdof level Tless than or equal to i.
Similarly define Hi’ for any set H of nodes on jT: and Si’ for any set S of

branches on c?t

3 - r‘_'- -

The set Xi is a cs for the set of I-strategies on /i' Since 67} is

finite, there is a subset Ai of Xi such that Ai is a gcs for the set of I-
- 3 - 6——'

strategies on ‘7-1' So there is a II-imposed subgame of /1 which is a subset
of Xi‘ Let Ai and Bi be two such II-imposed subgames. Then Ai U Bi is a
II-imposed subgame of C7P1, and Ai / By & Xi' (This 1is because any I-node
n on Ai v Bi is either on Ai or on Bi’ so all successors of n are on Ai or on
Bi’ so all successors of n are on Ai / Bi' For any node m on Ai / Bi’ all

predecessors of m are in Ai /) Bi‘ Any branch of Ai\\ﬂ) Bi goes all the way

up to level i.) So there is a largest II-imposed subgame of 02; which is a sub-
set of Xi' Call it Gi‘

If i >3, let (Gi)j'be all nodes of Gi of level less than or equal to j.

Notice that (Gj)j is a II-imposed subgame of 07-j and (Gi)j C .Xj. So

(G < Gj‘ This implies that ((Gi)j)k - (Gj)k if k < Jj <1i. Notice also

;<
that ((Gi)j)k = (Gi)k‘ Therefore (Gi)k - (Gj)k‘

Thus if we fix k, we find that (Gi)k is a II-imposed subgame of c7—k, for

each i, and these sets are getting smaller as i increases. So there must be a
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number I > k such that, for all i > I, (Gi)k = (Gi+1)k' (This is where the well-

foundedness assumption, mentioned in the beginning of this section, is used.

There are only finitely many nodes that we can remove from Gk and still have a

II-strategy for ’7_k.)
So, for each k, there is a number I, such that, for all i > I, (Gi)k =

(Gi+1)k' Let Y be LE,)(GIk)k. It can be checked that Y is a subset of X, and

for some II-strategy T of [ , Y < x. Q.E.D.
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SECTION 9: THE NORMALITY PROBLEM

We would Tike to explore the relationship between "being normal" and
“being a tree". The earlier sections dealt with weaves that we assumed were
normal and showed how they can be made into trees. Now we start with weaves
that we know are trees and ask "When are such weaves normal?" We will say
that a tree CY_ is normal iff the weave corkesponding to CTw is normal.

We already know some things about this problem.

(1) From The Fundamental Theorem we know that, in order for a tree to
be normal, it must be a well-founded tree (not a generalized tree of the sort
discussed at the end of Section 7). From now on in this section we will
discuss only well-founded trees.

(2) Let ;% be the following binary tree with final nodes.

Then a well-known determinateness result [3] tells us that }% is not normal.
(3) Let 7 be a tree, and assume that every branch of / is finite.

Then every game that can be played on 07_15 an open game and thus a determinated

game, and so 07— is normal.
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(4) Any stopped tree with countably many branches is normal, because, in
' a countable topological space, every set is an Fc set, and it has been shown in

[8] that Fo sets are determined.

(5) The following tree

/
(with a final node at the end of each branch) has 2 Ao branches, but is normal.

(6) The tree

/
.. « 2 &)0—-many branches each of
length 1

I

has 2 Po branches, but it is normal.
(7) Let °7~ be a tree such that the first w levels of ‘7ﬂ are identical to

?( . Then [ is "bigger" than ‘;% in some sense, and so / is non-normal.

(8) Let °/ be the following tree.




Then / is "bigger" than A in some sense, and 07~ is non-normal.
We would 1ike to generalize the statements of (6), (7), and (8). For (6)

we would like to compare the given tree with the binary tree

\/

in a way that can be generalized to longer trees, and show that such trees are
always normal. In other words, we would Tike a theorem to show that the width
of a tree doesn't help contribute to the possibility of its being non-normal.
So far, no such theorem has appeared. We suggest that a possible avenue might
be found by looking at Section 6 of [6].

For (7) and (8) we will clarify the notion of "bigger" and show that a
tree that's "bigger" than a non-normal tree is itself non-normal. This means
that, somewhere in the partial ordering of binary trees (wifh respect to
"bigness"), there is a dividing line between normal and non-normal. So far we
know that ;% is on the non-normal side of this dividing line, but we don't
know if any trees smaller than }% are non—nonnél. For the most part we will

discuss only binary trees.:

The first task is to get a definition of "containment" for trees.
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DEFINITION (for stopped trees iT'] and i7.2): The tree ﬁré is an extension of

Ty iff 7T ds a subtree of /.

THEOREM 9.1 (for stopped trees): An extension of a non-normal tree is non-

normal.

PROOF: Let 07} and i7é be stopped trees, and let CTE be an extension of 07-].
Let X1 be a set of branches witnessing the non-normality of ;7} (i.e., for each

o which is a I-strategy on ﬁf}, o §i X], and, for each T which is a II-strategy

c5 ~ -
on / PP TN X = p). Let X, = {b, e if‘z | 3bye Xy s.t. b, extends b;}.

~

Notice that X, = {b] € rr‘] | 4 b, € 67q2 s.t. (b2 extends b1) A (b2 € Xz)}. So

~

S ¢ X, iff VsesS 3 b, € ¢7’2 s.t. b, extends by and b, € X,. (*)
We can also write X; = {b; e c?‘1 | ( \sz > 1f~2) [b2 extends by => b, e XZJ}.
So |
SM Xy =piff ¥seS Ib,e G“/:”2 s.t. b, extgnds b
and b2 F X2. (**)

~

e
Let o(t) be a I(II)-strategy on [ o+ Then the restriction of o(t) to 071

~is a I(II)-strategy on ﬁf}. We show that the set X2 witnesses the non-normality

of 7Fé.
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(i) If 0y is a I-strategy on jré, and g, — X2, let o be the restrict-

~ion of o, to ,7‘1. Then o, is a I-strategy on :7}, and, by (*), oy & X,.

This is a contradiction.

(ii) If T, is a II-strategy on ,?~2’ and T, () X2 =0, let T be the
restriction of T, to 07‘]. Then g is a II-strategy in 67”], and, by (**),
T, () X, = P. This is a contradiction.

Therefore 07?2 is non-normal. Q.E.D.

DEFINITION (for continuing trees CYM] and jrpz): The tree ﬁzaz is an extension
of ?T“] iff ﬁr} is a subtree of 07_2, and no branch of i?iz is a proper ex-

tension of a continuing branch of ?r}.

THEOREM 9.2 (for continuing trees): An extension of a non-normal tree is non-

normal.

The proof is similar to the proof of Theorem 9.1. As usual we must be

careful to discuss only stopped branches and only admissible strategies.

DEFINITION: Let 67#] and CTE be trees, and let f be a function from 07'; to

~

0752. The function f is an isomorphism iff it satisfies the following conditions.

(1) The function is one-to-one and onto.

(2) If b is a stopped (continuing) branch, then f(b) is a stopped

(continuing) branch.
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(3) If b, and b, part company at an even (odd) node, then f(b]) and f(bz)

! part company at an even (odd) node.

By this definition, the tree in example (8) is isomorphic to ﬁk .

DEFINITION: The tree ir} is smaller than ﬁré (and 7, is larger than 77)

- - d_.-. - .
iff there is a tree [ )| satisfying

(1) r7w]' is isomorphic to ir}, and

(2) ‘7_'2 is an extension of 67712

THEOREM 9.3: If ”7} and 17; are isomorphic, then they are either both normal

or both non-normal.
This theorem will be proved in the next section.

COROLLARY: If 67’] is smaller than C7Mé, and U7ﬂa is non-normal, then jfé is

non-normal.

Thus any tree that's larger than ;k is non-normal. What about trees
smaller than A ? We know that we can add normal "pieces" to normal trees by

the next theorem.

DEFINITION: If 07# is a tree and x is a node on °/, then 37; is the subtree

c'\—_
of 07’ consisting of all branches of / that pass through x.
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 THEOREM 9.4: Let */ be a stopped tree and 7, , 77 , ..., 7., be
' 0 1 o

subtrees. (For each i, let the level of the node X; be a successor ordinal.)

Let ¢7~' be obtained from °/ by removing the subtrees d7ﬂ;0, f7*¥], cees

o7r'x 5. 50m = IF ﬁfﬂ' is normal, then 17'is normal.

o

PROOF: Let X be a set of branches of ?72 and consider X to be the winning set
for player I. We will show that this game < °7-, X> is determined.

Define a set, Y', of nodes on °J ' as follows. Let y e Y' iff

(1) y is a I-node,

(2) 'y is x_, for some a,

~

(3) player I has a winning strategy for the game < 77; » X M ; x>
a a

and
(4) there is no node, n, below y, satisfying
(4a) n is a II-node,

(4b) n is Xgs for some B, and
/x>‘
B

Let Ty be the set of all branches that pass through a node y in Y'. Let Z' be

(4c) player II has a winning strategy for the game < ‘7_¥ ,» X M)
B

the set of all branches z in 67_' N\ X satisfying
"there is no node n, along z, with properties (4a), (4b) and (4c)".

The tree c7m' is normal, so either player I or player II has a winning

strategy for the game < 7 ', Ty W Z'>.
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Case(1) Player I has a winning strategy in < C7r1’ PY' \ Z's. Then

player I can win < °7”, X> in the following way. She should first play her

strategy for < G7ﬂ‘, Fy. W Z's. In doing so, any of three things may happen.

Subcase(1.1) The game remains in 77'. Then the resulting play will be
in Z'. Since Z' € X, player I will have won < 7, X>.

Subcase(1.2) Player I moves the game off of “/°'. Then the game will
have reached a node y in Y'. By definition of Y', player I has a winning

strategy in the game < =7*;, X M F7_’y> (property (3)), so player I should
proceed to win the game < 57’y’ X M rir; >, and thus win < -/, X>.

Subcase(1.3) Player II moves the game off of °J '. Then the game will
have. reached a node X (for some o). Since the game has been played (up to
that point) only along branches in Z' M FY., it is impossible for the node
X, to satisfy the conditions (4a), (4b) and (4c). Thus, in particular, player II
cannot have a winning strategy in the subgame < ﬁr;, Gf_a /Y X>. Thus player
I has a winning strategy in < 27;, c?h; 7 X>, and so player I can proceed

to win < Cyﬁa, =7r‘a M X>, and thus win < 7/, x>.

Therefore, in Case(1),player I has a winning strategy for < °7d, X>.

Case (2) Player II has a winning strategy in < 67"', Ty, ) Z'>. Then

player II has a winning strategy in </, X>. The proof bf this is similar to

the proof for Case(1). Q.E.D.

COROLLARY: If G7ﬂ' is normal and stopped, then any extension of 57" that is

obtained by adding only countably many branches is also normal.
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COROLLARY: If c7~' is normal and stopped, then any extension of ﬁfn that is

obtained by adding only nodes of finite level is also normal.

COROLLARY: If 67‘ is non-normal and stopped, and GT'.l is obtained from o7-'by
removing all nodes n such that there is no node n', of infinite Tevel, above

n, then “J ' is non-normal.

COROLLARY: If “T" is non-normal and stopped, and °7 ' is obtained from </ by

removing all finite branches, then 7 ' is non-normal.

We want to be able to go from stopped trees to continuing trees. The

following definitions and theorem help.

DEFINITION: Let °/ be a continuing tree. The stopping of 7 is the tree
that is obtained from FT'by replacing

97
1A
$ A
A
by

b

b

1b

th

for each contfnuing branch b.




84

DEFINITION: If ‘7_' is the stopping of 7~, then Tis called an unstopping
"of T "

THEOREM 9.5: If °7 1is an unstopping of 7 ', and °7 ' is normal, then 7
is normal.

\-."—'A" ) - .
PROOF: Let X < [ . Let X' =X \_/ {be °T'| b is continuing (as a branch
of “/°) and b has the marker " 3 L, — 3 R"}. By the normality of 7', there

is a I-strategy, o', of /', such that ¢' < X', or there is a II-strategy, t',

~

of 7', such that ©* < “/ ' - x'.

Case(1) Let ¢' < X'. Notice that o passes through no branches that are
marked " — 3J L, 3 R" in 7, so o' is an admissible I-strategy in 7— When
interpreted as a strategy in [ , o' < X.

Case(2) Let ;' c T . X'. Since X' contains all branches with the
marker " 4 L, =7 3 R", t' passes through none of these branches. So t' is an
admissible II-strategy in “T". Since t' M X' = P, we have ;' N X =0. So

' < 7] - X, when interpreted as a strategy in 7.

Thus the game < ‘7‘, X> is determined. So e7—-1'5 normal. Q.E.D.
The question remains "Are there any stopped trees of length at most w + 1,
other than ?( » which are non-normal?" In an attempt to answer this we have

formulated the following machinery.

LEMMA 9.6: Let X < GT s Ta I-imposed subtree of }( , and let the game

< % , X> be indeterminate. Then < 7, X> is indeterminate.




85

PROOF: Assume that the game < ‘7-, X> is determined.

Case(1) Player I has a winning strategy for < °7-., X>. Then to win
< 9( » X>, player I should use her stfategy for < [, X>, making sure not to
leave the tree CT (She can do this since 07— is I-imposed.)

Case(2) Player II has a winning strategy for < 7-, X>. Then to win
< ﬂ( » X>, player II should use her strategy for < 7_, X> until the resulting
play leaves the tree °7' (At that time player II is sure to win, since
X e ri“.) If the resulting play remains on “T", then player 1I wins <7, X>,
and thus wins < }{/, X>.

Therefore, if < [, X> is determined then < X', X> is determined. Q.E.D.

" Suppose we can find such an X and T If we can show that ?{ is not
smaller than Cr, then 7_1'5 an example of a non-normal tree which is strictly

smaller than ;{ . The converse of this lemma also holds.

LEMMA 9.7: Let Tbe a I-imposed subtree of /?< , and Tet X < 7— . If

< T, X> is indeterminate, then < 9{, X> is indeterminate.

PROOF: Assume that <,Q< ,» X> is determined.

Case (1) Player I has a winning strategy for < ?(, X>. ‘AThen player 1
should use her winning strategy for < Q(, X>. Since X C F/H , the resulting
play (of the game < A, X>) will be on the tree ‘7—, thus being a win for I in

< T, x.

Case (2) Player II has a winning strategy for < %, X>. Then player II

should use her winning strategy for < ;% s X>. In this way, she will win

< T, %.

Therefore, if < ?(, X> is determined, then < T, X> is determined. Q.E.D.
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The next step is to show how we can get 67‘ from X. GivenAX, we will
' find a smallest possible I-imposed subtree 'ﬁfﬁsuch that X C ¢7_ 5

Recall from Section 8 the definition of the completion, X*, of a set X
of branches. If X C c/:_, then X* < ‘7‘\‘ . Let £ be the subtree ofﬂ(
satisfying <? = X*. It may be that ’(f is not a I-imposed subtree of ﬁ% .
That is, there may be a node n on A37 of II-parity, and a node x of }%f,

such that x is a successor of n in j% , but x is not in <f . For each such

n and X, enlarge £ by adding a certain subtree ,<fx to ‘f’ --let ‘f’x be

a I-strategy starting from x. For example, the tree

becomes enlarged to be the tree

N ’
) #
~ ’
w

\

§
{
/,V

[
N 4
~ s .
B

The enlarged set is our I-imposed set ?T_
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LEMMA 9.8: Construct °/ from X as above. Then Tis the smallest I-imposed
subtree of 7{ satisfying X < 7 .

Begin with <ﬂ( » X> indeterminate, and construct anrom X. By Lemma 9.6,

X must be indeterminate in 7' Now we can get another converse to Lemma 9.6.

LEMMA 9.9: Let OTbe a non-normal tree which is strictly smaller than /Q( .

~

Then there is a set X < 7( , and a I-imposed subtree ' of A, such that

1= .

PROOF: Enlarge 7- into a I-imposed subtree °7_' (of ﬂ( ) as in the procedure
given above. Let X be a set of branches witnessing the non-normality of 7_' _
By Lemma 9.8, “J"' is a I-imposed subtree of & . By Lemma 9.6, 7' is not
normal. Since the subgames that we added to €/  to obtain 7 ' were I-strategies,
T’ is still strictly smaller than 3{ Q.E.D.

Thus to find a non-normal tree that's strictly smaller than % » we should
look for a I-imposed subtree, T, of ?{ and a set X < .,-f- witnessing the non-
normality of 7( . By the construction of °/  from X we need only look for sets
X satisfying ' ‘

(1) X witnesses the non-normality of ?< , and

(2) X* is strictly smaller than ?{

Whether or not such a set X exists is an open question. One possible approach

is to try to construct X by modifying the technique used in [3].
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SECTION 10: GRAPHS

In previous sections we have represented weaves by trees and by logical
statements. In this section we represent weaves by graphs. The mapping
from weaves to graphs is not onto. Graphs that lie in the range of this
mapping will be called "coverable". The mapping from weaves to coverable
graphs is not one-to-one, but it has a fairly natural partial inverse. The
weaves that are in the range of this partial inverse will be called "graphable",
and so we will have a one-to-one function from graphable weaves to coverable
graphs. Although the theory of graphable weaves is not developed fully here,
we believe that this is a valuable approach, since it shifts the focus of the

subject in an interesting way and provides intuitions in that direction.

DEFINITION: Let QE_ be a weave, and let a and b be in A?ph(;ﬁ,). We write

a %ﬂ_ b iff there is a set L in il such that a, b € L.
PROPOSITION 10.1: The relation iﬁh is reflexive and symmetric.

For any weave Jl , We can use :il to form an undirected graph. We call

this the graph of A and denote it by graph(.J ).

DEFINITION: Let ~ be a reflexive, symmetric relation. A set S is called a

clique iff, for all a and b, if a, be S, then a ~ b. The clique S is a maximal

clique iff, for each ¢ ¢ S, there is an a € S such that a 7 C.
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For any weave Jl,, and any set L in L., L is a clique of zp - For some
weaves the sets correspond exactly to the maximal cliques of L. , and we call

these weaves graphable.

DEFINITION: Let ~ be a reflexive, symmetric relation. The family of maximal

cliques of ~ is denoted [ (-).
So a weave J. is graphable if and only if él(le ) =L .

PROPOSITION 10.2: The Axiom of Choice implies that :JZ(~) is equal to ~, for any

relation ~, which is reflexive and symmetric.

PROOF: For any a, b € Alph( L), a :Jl,b iff there is a set S in L (~) such
that a, b € S. This, in turn, is true iff there is a set S such that

(1) for each x and y, if x, y € S then x ~ vy,

(2) S is maximal with respect to property (1), and

(3) a, b esS.

We want to show that a Z‘J2~(~)b iff a ~ b.
—: Ifa= J:(~)b, then a, b € S, and for each x and y,_if X, Yy eS8,

then x ~y. So a ~ b.

&= : Assume that a ~ b. Let Se f iff for all x and y, ifx, y €S,
then x ~ y. Order the family ¢ by set inclusion. This family is non-empty,
because {a,b} ¢ & . Let S; e & > for all i < a, and let S

8 - SY for

B<y<a. Wewant to show that \,JSi € Ag . Ifx, ye k,/Si, then let

X € SB’ y € SY’ and S

T SY' Then x, y € SY’ so X ~ y. Therefore kJsi eﬁg .

B
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Thus f has a maximal element S*, so there is a set S* in ¢ (~) such that

a, b € S*. Therefore a :L(~)b’ Q.E.D.

‘Let &£ be the weave {{a,b,x}, {b,c,y}, {a,c,z}}. The graph of L is

and so L (zp ) is {{a,b,c}, {x,a}, {b,y}, {c,z}}. In this case, oC(‘-‘-£ )
is nothing 1ike the original weave oQ . This 1is not the case for decomposable

weaves.

PROPOSITION 10.3: Let bjs, b

EERERE ba, ... be branches on the stopped tree

T. Assume that for each i, j < a, bi and b:i part company at a 1I-node.

Then there is a I-strategy, o, on T such that b,, b b are all in

0> Pps cees Dy e

G. (If DT is continuing, we further assume that bo, b1, vy ba, ... are

stopped branches, and show that o is an admissible I-strategy.)
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PROOF: First we assume that 67# is stopped. There is a unique node, o> of

Let

lowest level such that two branches, bi and bj » part company at n
0

0 0

9% be a I-strategy passing through o

Since No is a node of II-parity, 0y Passes through each successor, nys of Ng-
For each such Ny find the unique node, N, of lowest level above ny such that

two branches bi and bj part company at n,. Find a partial I-strategy start-
2

2

ing from " and passing through Nos and call this partial I-strategy Og.

Modify UO_by trimming away the part of it that follows ny and replacing this

part by Oy




modified _e
%

Do this for all successors, n1, of no. For each node n, found in this fashion,

take each successor N3, and continue on as above. If we reach a node Ny such

that there is no node n above n, where two branches, b. and b, , part
k+1 k T Jg

company, this means that only one branch, bi , passes through ny- Starting
k

from the node o modify gy SO that it passes through the branch bi . The
k

resulting strategy 9 has the property that bD’ b], «ees by ... are all in

9g-
If 07_ is continuing, we need only be sure that the original strategy
that is chosen, ag» and all partial strategies that are chosen thereafter

(e.g.,oz), are admissible I-strategies. Such strategies must exist because

every node on the tree must have an admissible I-strategy passing through it.
(Otherwise no stopped branch passing through that node would be in the

alphabet of L .) Q.E.D.

COROLLARY: Every decomposable weave is graphable.
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PROOF: Let J:. be a decomposable weave and let L € L . Then L is a clique

of = .
L

To show that L is a maximal clique, consider c7-,.the tree for dﬁ_. On
that tree L is a I-strategy, and thus L is a I-imposed subgame. Let b be a
branch that is not in L, and Tet n be the node of highest level that is on
both b and some branch, a, of L. Since L is I-imposed, n must be a node of

I-parity. So a and b part company at a node of I-parity. So a # b. Thus

L

L is a maximal clique of :il .

Conversely, let L be a maximal clique of :il . By Proposition 10. 3,

there is an admissible I-strategy o on the tree for JL such that L < G.

By the maximality of L, L = 5. SoLe L. Q.E.D.
Now we can prove Theorem 9.3.

THEOREM 9.3: If <jr} and vré are isomorphic, then they are either both normal

or both non-normal.

PROOF: Let 97#5 be the tree for aCl1, and let G7H2 be the tree for °£12' We

have a one-to-one function, f,.from c?_i onto 07_2. This is-tﬂe same as a one-

to-one function, f, from Alph( JZI) to Alph( 412). By condition (3) in the

definition of an isomorphism, we have that a ;Jl b iff f(a) = < f(b), for all
1 2

a, b € Alph( Jl]). So -41] and 41;2 have isomorphic graphs. But 41.1 and [ 2

are decomposable, so by above corollary they are graphable. Thus J:] equals the
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family of maximal cliques of graph(‘il]), which is isomorphic to the family
of haxima] cliques of graph( le), which, in turn, is equal to UCUZ. There-
fore JZ] and J:z are isomorphic as weaves. So they are both normal or both
non-normal. Thus the trees CY“] and UTE are either both normal or both non-

normal. Q.E.D.

Now we examine the properties of "being a weave", "being a normal weave",
etc., in terms of graphs.

Let ~ be a reflexive, symmetric relation. The graph determined by ~ is
said to be coverable iff L (~) is a weave. At the present time there is no
good characterization of coverable graphs. Some work on a simplification of
this problem is done in [1]. Here we give one proposition showing a way (not

the best way) to get coverable graphs from uncoverable graphs.

DEFINITION: Let I' be a graph, and let G be a set of nodes on I'. The set G

is a good choice set of I' iff G meets every maximal clique at one and only one

point.

DEFINITION: Let n be a node on the graph I'. We say that n is coverable iff

there is a gcs for I' that contains n.

PROPOSITION 10.4: Let I be a graph, and let T'' be the graph obtained from T

by removing all nodes which are not coverable. If I'' is non-empty, then I'' is

a coverable graph.
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PROOF: Let a be a node of I''. Then a is coverable as a node of I'. Let G be
a gcs of T containing a. By definition of coverable, all the nodes of G are
coverable, so all the nodes of G are in Tr'. So G is a subset of I''. Since no
new connections between nodes were formed in going from I' to ', the set G can
meet each maximal clique of.F' at most once. We want to show that G meets
every maximal clique of T'' exactly once.

Let C' be a maximal clique of I''. Let fi be the family of all cliques
of T which contain C'. Since C' ¢ C » the family € s non-empty. If

C0 e C] - Cz < ... are all in € , then we must show that \JCi is in
€ . First we have that C' < \,/Ci. Next we assume that x and y are in

» for some i, and 1. Assume that i >

Kq{Ci. Then x € CiD and y € C, iy

1

Then x, y € C; . So x ~ y. Thus kvjci is a clique. By Zorn's Lemma, the
1

family fi has a maximal element C. So we have shown that there is a maximal
clique, C, of T such that C' £ (.

Let C be the set of x in C such that x is coverable (as a node of T'). We
want to show that C' = C. Since C' < T', every element of C' is coverable.
Since C' & C, every element ofC' is in C. Thus C' < C. If x and y are in
E, then x and y are in C, so x '~ y. Thus E is a clique. So by the maximaiity
of C' we have that C' = C.

SoC' ={x | x e C A x coverable}. In other words, we have C' = C /M T,
Now G is a gcs for T containing a, so G meets C. But since G is a gcs, G is

a subset of I''. So G meets the set C /)Y T'. So G meets C'.

Thus G is a gcs for T'' which contains a. Q.E.D.
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So the problem of finding coverable graphs is reduced to that of finding
coverable points on graphs. Proposition 10.4 shows that this reduction is a
one-step process.

The property of a weave of "having cross sets" provides a good starting
point for determining which graphs represent normal weaves. We know that a
weave must have cross sets in order for it to be normal. The property of
having cross sets is given visual meaning in terms of graphs.

| Let a and b be in Alph(L ), and say there is a set L in JZ such that

a, bel. LetL, contain a but not b, and Tet Lb contain b but not a. (The
sets La and Lb are assumed to be in £ .) Then <a,b,La,Lb> is a crossed
quadrup]e, and X is a cross set for <a,b,la,Lp> iff X <= L\ L, - {a,bl,
xﬁLafm,andxﬂLbfm.

To say that a, b € L € {C means that a *p bs or, in pictorial terms,

To picture the sets L, and Lb we would have something like

N

If L has cross sets, then for every such configuration there must be a maximal

clique X meeting both L, and Ly but not containing a or b. So there must be an
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X el (x#a) and a y ¢ Ly (y#b) such that x, y € X. This means that we must

have

a - b
In other words, there must be some x in L, (x#a) and some y in Ly (y#b) such

that x :uc'y. This is a necessary and sufficient condition for the existance

of a cross set for <a,b,La,L >.

b

In order for a graph to represent a weave that has cross sets, there can

be no configuration of the form

cquy? Ea ‘cl1ﬂue Lb
r - ~ ' -

\ b

I
]
1

- = - -

without also having a line between either

(1) some node in L, - {a} and some node in L, - {b},

(2) some node in Lé - {a} and the node b, or

(3) the node a and some node in Lb - {b}.
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Now consider the graph

>0 Po
51 P;
52 P2
53 p3

This graph represents a weave that has cross sets but is not normal. We would

Tike a theorem which says that every such graph has a subgraph that is isomophic

to this graph.
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SECTION 11: DEGREES OF NORMALITY

This section is devoted to the problem: "How non=normal can a weave be?"
This problem seems to have three aspects, because a weave can fail to be
normal for three entirely different reasons.

(1) It can be indecomposable and not be represented by a tree. (This
is something like being too disorderly.)

(2) It can be represented by a tree which is not well-founded.

(3) It can be represented by a well-founded tree that's too big to be
normal. (This is the classical determinateness problem.)

It seems as if some results in area (3) would be most useful in helping
solve determinateness problems. We believe that area (1) is currently the
easiest in which to find results, and that results in area (1) are pre-requisites
to finding results in areas (2) and (3). Although it is not stated directly,
our focus in this section is on area (1). The whole subject of Normality Degrees
remains an interesting and (surprisingly) complex problem.

In this section, whenever we write that L. is é?-norma], we assume that

F is the largest family F' such that £ is F'-normal.

DEFINITION: Let <131 be an F ,-normal weave, and let L , be an ;3'2—norma1

weave. We say that J3 1 is normal in 41,2 iff E}] < ij‘z. We say that & 1

and 412 are normal equivalent iff “C'T is normal 1in 41_2 and Jl 2 is normal in

L

]t
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If we choose, we can always rename the elements of Alph( Cﬁi 1) before
comparing ciz 1 and QC,Z for nommality. In this case we'd be asking "Do 5}]
and \3—2 have the same shape?" instead of asking "Are 3‘1 and 3}2 the same?"

Of course we have to be careful to note which renaming function we use, because
different functions will give different answers to the question.

We give three possible definitions of "degree of normality".

DEFINITION (a): We write JL] e [ L o] iff Qif] is normal equivalent to 412.

For any weave 422, the class [ £ 2] is called a degree of normality.

This mimicsthe standard definitions of Turing degree, but in our situation
it seems to be more appropriate to define "degree of normality" in a slightly
different (but equivalent) way. So we give another definition.

DEFINITION (*): We write }] e[ F 2] iff there is a function f from
Alph( F ]) into Alph( F 5) such that

(1) f is one-to-one and onto, and

(2) f induces a function f* on 5}1 which is one-to-one and onto :}2.

(In other words, Ef] and 3‘2 are isomorphic as sets.)

DEFINITION (b): The class [ :}'2] is called a degree of normality iff there is
a weave °C2 such that Qﬂz is  f,-normal.

This is still not the definition of "degree of normality" that we will

use. OQOur definition is slightly different. We will use definition (c) below.
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DEFINITION: Let L be a weave. We use X () to denote the family of all

sets X such that X is a cs of cC, but there is no G € X such that G is a

gcs ofcf, .

We choose to emphasize this family }((OC) because, just as 3(0[‘,) seems
to be the dual of { in some sense ( Q[’_ and g(£ ) forming a pair of families
that are dual to one another with regard to gcs's), so < {, g (L), X (L) >
seems, in our estimation, to form a complete triple with regard to gcs's. It
is our belief that this triple < {2, g(iﬁ )s "j((o[’_b somehow encodes all data

relevant to the gcs's of OQ .

We let " 9(] e [ ﬂ’_z]" be defined exactly as in Definition (*).

DEFINITION (c): For any weave 2, the class [ X (L )] is called a degree

of normality.

We want to characterize all families ¥ that represent a degree of
normality. In a similar vein, we would like to characterize all partially
ordered sets <P, < > that are isomorphic to some < ’){ » & >, where ';( represents

a degree of normality. We have only a few scattered results.

PROPOSITION 11.1: If % represents a degree of normality, then 7, satisfies

VX, ¥, ZifX,ZeandX < Y S ZthenYe Z .

PROOF: If /'}_{ represents a degree of normality, then /'(= /’{/( C,Q ) for some

weave . . So, for each X 1'nl/,)( is a cs of J, but there is no 6 < X
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such that G is a gcs of &£ . let X, Ze ¥ and X S Y S 7. Since v O X
and X is a cs of L2, Y is a cs of L. If there is a set G < Y such that
G is a gcs of L, thenG < 7z, contradicting the fact that 7 e X . Thus
there is no such G. So Y ¢ ,2? . Q.E.D.

Now the task is to look for families < 2{, € > which satisfy the property
of Proposition 11.1 but do not represent degrees of normality. So far no such
example is known. For the remainder of this section we give several examples
illustrating families which do represent degrees of normality.

(1) There is a family j((uf) whose partial ordering < K(L), € > s
isomorphic to the one-point ordering. Let " be {{a,b}, {c,d}, {a,d}}. Then
g(sﬂ) is {{a,c}, {b,d}} and ¥ (L) is {{a.d}}.

(2) There is a family Y(L ) whose partial ordering < (L), C > is

=

Let £ = {{a,x}, {a,z,b}, {b,y}}. Then 3(4’_) = {{a,y}, {x,z,y}, {x,b}}, and
X (L) = {{a,b}, {a,b,z}}.

(3) The ordering
|

1

(|

is impossible, because this would violate Proposition 11.1.
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(4) There is a family /'((f ) whose partial ordering < ¥ (L ), € >

has the shape

tet Jf = {{a,b}, {c,d}, {a,d}, {x,y}}. Then é}(oﬂ) = {{a,c,x}, {a,c,y},
{b,d,x}, {b,d,y}}, and ]((.,Q) = {{x,a,d}, {y.a,d}, {x,y,a,d}}. By taking
the family {{a,b}, {c,d}, {a,d}} and adding the set S to it, we can get %(f)
to be the same shape as (P (S) - {p}.

~ (5) There is a family %(DC) whose partial ordering has the shape

=

/

Let L = {{a,c}, {a,e}, {e,f}, {e,g}}. Then g(f_) = {{a,f,g}, {c,e}}, and
X (L) = {{a,e}, {a,e,f}, {a,e,g}}.

(6) For any set S, there is a weave J such that ¥ ([ ) = P (s).
Let o = {{a,x}, {b,y}, {a,b} U S}, where a, b, x, y# S. Then Q(.ﬂ) is
{a,y}, {b,x}, and all sets of the form {x,y} U SO, where SO c S.
so XL) = Ps).

(7) Recall that T () is the family ﬁonsisting of all cs's of £ .
We prove that if d2 = n_ﬂT v DQZ’ then

(LY = (X (LY ACL ) v (il A XLy
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=2: Let Xy € X(,f]), and C, € e(oﬁz). Since Xy is a cs of
OQT,and Cz is a cs ofpcz, X U/ C, is a cs of °Cl v °C2' If A is
a gcs of up] v, OQZ, and A & X; \U C,, then A M A]ph(aﬂ,]) is a gcs

of aC], and A /) Alph( .,Q ]) C X], contradicting the assumption that

Xp e (L) Thus X, WU €, e Y (L) similarly, if X, e X (L ,) and
Cpe QL) then Xy U Gy e XL Thus X(L) 2 (x(L;) A
C(L) v (L X X (L.

C : LetXe )((£ ) The set X is equal to X; \UJ X,, where
X, < mPh(ﬁQ]) and X, < Mph(&z). Since X is a cs for OQ] v £ 2s
X] must be a cs for 081, and X2 must be a cs for nc o- But assume that there
are sets G, - X, and G, & X, such that G, is a gcs for .,C] and G, is
a gcs for °Q2‘ Then G L/ G, & Xy W Xy, and G; O G, is a gcs for .,8,
contradicting the assumption that X e )((08 ). So either X] € Z(aﬁ 1), or
Xpe KL Thusxe (X(Ly) A C(Ly) v (LY A X (L)),

Q.E.D.

As an application, Tet &, be a normal weave, and oﬁé be the weave of
example (1). Then X (L) v L) = (C(Ly) A X (L,
(XL A QL. since L s normal, K(L ) = 9, thus
XLy v Ly= CLy oA 'j((,ﬁz), but this is isomorphic, as a

partial ordering, to €(£1)' Thus if <P, < > is the partial ordering of
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the family of cs's of a normal weave, then there is a family 2’((’) whose

partial ordering < /’Z(,ﬁ )» € > is isomophic to <P, <€ >.

(8) For any weave [ let Gi f’) be the family (P(L ) - Q(oa).

Then we have the formula

XLy ALy = [ XLy i (xLyp T

[(;((&]) v EINA )Z(,az):\.

The proof is similar to that of example (7).

. We would Tike to know whether there is a weave QC such that 1/(,2) is

equal to the family of all infinite subsets of the natural numbers.
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SECTION 12: THE SYSTEM LAb

In this section we present a propositional logic and give a proof system
for it. Our logic will be different from the standard propositional calculus
in that the subformula relation will not be weH-foundéd. Our statements will
not be defined by induction, and the proofs of some statements will be
infinitely long.

We begin with a set A. If ac A, thena e A, 3 €A, etc.

IfpeA URU AU ..., then Ps ~Ps ~~P, ... etc. are called basic

semi-statements. The set of basic semi-statements is denoted B.

~ Let o@ be a normal stopped weave whose alphabet is a subset of B. Then
C,Q is a formula. If L = {p}, where pe A U & U A U e, then,C is

called an atomic formula.

By the Fundamental Theorem of Normal Weaves, every non-atomic formula

OC can be written non-trivally in one of the two forms ‘.‘C] v aC o or

vﬂ] A J\\ p- In addition we define ~d . LetL bea set. Then — L is

defined to be {~ 2| &2 e L} For a family L, we define —tho be
{- Ll LeL }. Foraformula <L , we define ~ [ to be 9 (=L ).
We define the semantics of our system. Let y be a function from A into

{T,F}. Let y(a) = ¢(3) = v(a) = ..., for all a in A. By induction define

p(~c) = ) T if y(c) = F, and

Fif y(c) = T.

Let y &= " iff there exists a set L in L such that, for all 2 in L, (%)
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A sequent is an expression of the form I -~ A, where Il and A are finite sequences

, of formulas. The antecedent of I » A is II, and the succeedent of I ~ A is A. Let
¥ | 1> A iff there exists an [ in I such that ¥ pfo[:, or there exists an [ in
A such that v = . A sequent Il ~ A is valid iff y E I - A, for every V.

We are now ready to define a proof system. The system has "axioms" and
“rules of inference", but the definition of what constitutes a proof is non-
standard. This definition is equivalent to the usual definition if we restrict
ourselves to the ordinary propositional calculus where the subformula relation
is well-founded.

Let £ and L ' be formulas. If L' can be obtained from L
by adding or deleting bars from some occurrances of letters
that appear in L, then L' is a bar variant of Jl . (For example,

{{a, B}, {a,c}}is a bar variant of {{a,b}, {a,c}}.) If L' is a bar variant
of L, then JZ » [ ' is an axiom.

We Tist the rules of inference of LAb. First we have the structural
rules.

(1)  The weakening rules are

028 oand oright —2A

left .
L,m-+a T4,

(2) Thecontraction rules are

Jeft Lo RLT>A 4 gt >a, £ .0

L, 0> A I -4, L

The occurrances of £ in the upper sequents of these inferences are called

predecessors of the occurrance in the lower sequent.
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(3) The exchange rules are

H,°C1,£_2,A+& _
left » and
I, on, L],A+ﬁ

> Ay L qs L, A

right :
- A, oﬁ_z, L 1 A

In each case the occurrance of 08 ]( UQ 2) in the upper sequent is the pre-
decessor of the occurrance of OQ]( ,C 2) in the Tower sequent.

Next we have the logical rules.

(4) The negatian rules are

cileft L2 8L g
~L, M
L, 1
~right = L2 8
>4, ~L
In each case, d is the predecessor of ..
(5) The conjunction rulés are
L, T>A s L > A
A left 1 or ’22 s

,C.IALE,H-*& °£'|IA°Q2’H+A

) ) II—a»ﬂ,oQ_] I[-»Q,QCZ
and A: right .

I->a, £ “‘Qz
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In A :left either Jl] or ¢12 is the predecessor of 111 A L o In
AN :right both 11] and llz are predecessors of uﬁ 1 A 41 2

(6) The disjunction rules are

L1,n+a LZ,H+A
LTV '-E_.st:"ﬂ

v :left y and

II+A,DQ] n+A,°Q2
V :right » Or

H+A,L] v &L, >, &4 v le

In v :left, both dC ] and Jﬂz are predecessors of th] v Jl,z. In

\Y} :I\right, either '«Q] or £ 5 is a predecessor of 66] > L 5
For a sequent II - ﬂ.we define a game T.

Stage 0: This is divided into cases.

Case(1) If I » A is an axiom, then the game is ended.

Case (2) There is a sequent SO’ or a pair of sequents S}, 52, from which

I > A follows by a rule of inference. Then player I chooses such a sequent SO

or such a pair S], 52.

Case (3) None of the above happen. Then the game is ended.

Stage 1: If Case (2) happened in Stage 0, and player I chose S.. then

0!
player II chooses SO‘ The sequent S0 is said to be "in p1éy“ at the end of
Stage 1. If Case (2) happened in Stage 0, and player I chose S], 52, then player

II choses either S1 or 52. Whichever sequent player II choses is said to be

"in play" at the end of Stage 1.

Assume that the sequent S is in play at the end of Stage 2n - 1.
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Stage 2n: This is the same as Stage 0, except we use E instead of
M- A.

Stage 2n+1: This is the same as Stage 1, except we use the result of
Stage 2n.

We now describe what happens at Stage X, for a 1imit ordinal A. Let

§], §3, §5, oR R 5 Sa’ ... be the sequents that were in play at the end of
stages 1, 3, 5, «..5 Qs «vvs for o < A. We define the sequent §A in the
following way. Let -111 be a formula appearing in §]. Let J: 3 be the pre-
decessor of L 1 in the sequent 53. Let L 5 be the predecessor of oL 3
in SS’ and so on. For each a, let L a be the same as °C-a’ except with

all hegation symbols erased. Since J:-l is stopped, it must be true that

Lo m Alph( S ') is non-empty. Leta e (" Alph( L '). Now
1 0 < A o o
o odd
a must appear, in some form (i.e.,with a finite number of negation signs in

front of it) in N 1 Since we can only have a finite number of negation signs

in front of any letter, this means that the rules ~:left and ~:right could

only have been applied finitely many times to ﬁﬂ_i, L 3 +eo in the branch
Sys S3s eee - Thus there is an ordinal B < A such that, for.all vy satisfying
B< Y< A, SY is not obtained from SY+2 by applying a negation rule to cll 42"

(In fact, since there are only finitely many formulas in the sequent g], we

know that the negation rules _:left and ~:right can only be used finitely

many times on the part1a1 branch 51, 53, ..., and this applies to any partial

branch.) Thus if 11‘8 is in the antecedent of §B, then JQ,Y is in the



111

- antecedent. of 58. for each v satisfying g <Y < A. (Similarly, if n[l 8

is in the succeedent of 58, then c(l,Y is in the succeedent of §T’ for each vy

satisfying B < Y < A.) Furthermore we know that 8 ¥ (F“\ Alph( L Y) is
B<y<A
y odd

non-empty, since J:_B is stopped. Let this be the formula JZ,A. Let it appear
in either the antecedent or the succeedent of §A’ depending on where c{} 8

appears in §B.
Stage A (X is a limit ordinal): Stage A is played exactly as Stage 0,

except using §A instead of 1T - A.

In the game I', a play p is winning for I iff an axiom appears somewhere
a10h§ p. A proof of I >~ A is a game I where player I has a winning strategy.

It is not necessary to use game terminology to define a proof. Our
definition of "proof" is equjva]ent to the following, somewhat more conventional,
formulation.

Let / be a tree of sequents. The tree C7“'1'5 a proof of I - A, where
T - A is the sequent that appears on the bottom of ‘7‘, iff 07” satisfies the
following conditions.

(0) Every branch has a topmost sequent.

(1) The topmost sequents of °T" are axioms.

(2) Let S occur on °T- at a node whose level is a successor ordinal.
Then S is an upper sequent of an inference whose lower sequent is also on ”7‘ .

(3) Let S occur on T at a node whose level is a limit ordinal. Then

~

S is obtained from its successors 51, 53, §5, ... in the manner described above.

We will present a proof of soundness and completeness for the system LAb.

e R

e e RO S A
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THEOREM 12.1: The system LAb is sound.

PROOF: Let I ~ A be a sequent which is not valid, and let °/ be a tree of
sequents satisfying conditions 0), (2), and (3) given above. We will show that
QT_ does not satify condition (1). More specifically, we will show that there
is a branch b of | such that no sequent on b is valid.

Since I > A is not valid, we know that there is a truth function Y such
that y = ATl andy & V A. So for each formula £ in 1, we can pick a set
L in L. such that y( ) =T, for all & in L. Furthermore, for each formula
YX{ in A, we can pick a set G ¢ é? (M) such that y(g) = F for all g in
G. These sets testify to the invalidity of I -~ A. We will find consecutive

predecessors H] > &1, H2 * by, ... of the sequent I » A, and find sets which

testify to their invalidity.

Case(1) Let I > A be obtained, on the tree, from T, > A by an

application of the rule ~: left; i.e., we have

> 8L

~ L, I' > A
Let Ly, Lys -evs Lp, Gg> Gys vvs Gq testify to the invalidity of ~) ,I1'> A,
and Tet Lj e ~dL . Let Lo* be such that Ly = — Lg*. Then L;, ..., Lp, Ggs
G1, e Gq, LO* testify to the invalidity of m > &1', L.

Case(2) The sequent T + A is obtained, on the tree, from Ty > 4y by an

application of ~:right. This is similar to Case(1).

Case(3) Let I > A be obtained, on the tree, from My > &y by an application”

of A :left, i.e.,.we have
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LY It 8,
J\\l /\_£’ll,nl"*ﬂ

Let Lo, Lys wevs Loy Bga wnny G testify to the invalidity of L' A £ '7,

m' » A» and Tet Lj ¢ L' A L' Then Lo M Alph( L), P

ps G’

-+» Gy testify to the invalidity of L', I 4

1°
Case ) Let I > A be obtained, on the tree, from T+ A and ﬁ »—3 by

an application of A :right, i.e., we have

I > A, L
H""A" tQI

’QI|

> |R

A
°Qll

Let LO’ L], cees Lp, GO’ ey Gq testify to the invalidity of T » A',

LA L, and Tet Gy € éi (R' A L''). Then either 6y © 6? (L") or

Gq > éj( L ''). Assume without loss of generality that Gq € ;3 (L '). Then
let T - E‘, L ' be I, > by, (We have chosen a particular predecessor of II -~ A.)
Then LO’ L1, v Lp, GO, e Gq testifies to the invalidity of Iy > 4.

Case(5) For v : left we.have something similar to Case(4). For v:right
we have something similar to Case(3). A1l other cases are straight forward.

Now assume that we have chosen the sequents II -+ A, n] -> a1, Hz > &2’ v
n n n .~ N .
Mo > B - N <w and LO 2 =aan Lp . GO § amey Gq , for each n. Along this

sequence find a number No such that, for each k satisfying No <k < w,

nk - Qk is not obtained from Hk+} > &k+1 by applying a negation rule to




. k k k k
My = Ak+]‘ By choice of the sets LO x smes Lp . GO R Gq » we have that
k )
k "o
k o
G s
g € &

: - |
for all k such that nj < k < w. Thus, for example L, N Aph( L K = L1k

- no

if L k is the appropriate predecessor formula in Mg = B So Ly "M Alph( L )

is non-empty. By applying Lemma 3.8 to this situation, we have that

n
L, e Alph( J:__w) # D, where Jl_ujis the appropriate predecessor formula in
n n
. . 0 0
m, > 4, Doing this for L, © (M Alph( L Zu}, cees Gq () Alph( 71 qw), we

n n
get that the collection of sets L °N Alph( L. W) Lo e Alph( L. 9 )s <oy
w

n .
Gq 0 M Alph( q ) testifies to the invalidity of I,~>4,- Thus all sequents
w N
I+ A, n, > Ays o > Aps ooy T > A are invalid. We continue by induction to
1 1 2 i W W :

find a branch b such that no sequent on b is valid. This completes the soundness

proof. Q.E.D.

THEOREM 12.2: The system LAb is complete.
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PROOF: Let II - A be a sequent. We contruct a tree for I -~ A, which we call a

reduction tree, and use this tree to obtain a proof of H »- A, or to show that

I - A is not valid.

We construct the reduction tree in stages.

Stage 0: We write I ~ A at the bottom of the tree.

Stage k (Assume that k is a successor ordinal. We can define a parity on
k. If nis a finite number, n = m (mod 7), and k - n is a 1imit ordinal (or
k - n=20), then k has parity m): If every topmost sequent has a formula common
to its antecedent and succeedent, then we stop. If not, we divide into cases
depending on the parity of k. ‘

() If the parity of k is 0, let & - ¥ be any topmost sequent of the

tree which was defined at stage k - 1. Let-qu-[,..., ~ ,Q_p be all formulas

in & whose outermost connective is ~, and to which no reduction has been applied

in previous stages. Then write down & » ¥, [ 10 s L D above & - V¥,

(1) If the partiy of k is 1, let ® - ¥ be any topmost sequent of the tree

which was defined at stage k - 1. Let ~ J11, ey ~ lzp be all formulas in V¥

whose outermost connective is ~, and to which no reduction has been applied in

previous stages. Then write down L 10 +eeo L p? ® > ¥ above ¢ »> V.

@) If the parity of k is 2, let @ - ¥ be any topmost sequent of the tree
which was defined at stage k - 1. Let L 1 A le], 085 ] llp A ﬂlp be all

formulas in & whose outermost connective is A , and to which no reduction has

been applied in previous stages. Then write down Jl 1° m 15 e Jl_p, m D’

® > ¥ above & » V.

B) Let Jl 1 A ”11, cees le A M b be all formulas in ¥ whose outer-

most connective is A, and to which no reduction has been applied. Write down
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all sequents of the form & - V¥, N CIRREE ﬂ p? where )? j 1s either o&i or

m j» above & > VY.
@) Let c&1 v m1, s .Qp v mp be all formulas in ¢ whose outer-

most connective is v , and to which no reduction has been applied. Above

¢ > ¥ write down all sequents of the form //f 12 e }’? p> ¢ > V¥, where }/?1_

is either oﬁi or mi‘
(5) Let oa] vm 12 oo gﬂp « M b be all formulas in ¥ whose outer-

most connective is v , and to which no reduction has been applied. Above

> v write down ¢ » ¥, R, M, ..., Logsm

. (6) If & and ¥ have any formula in common, or if none of (0) through (5)
apply, then write nothing above & - V.

Stage A (Assume that A is a Timit ordinal): Let II > A, I » Ay, T, > Ay,

. be any branch on the tree of length A. Define M > Ay as in the definition

of the game T'. Write HJ\ > ﬂ'k

at the top of this branch.
If each branch of the reduction tree for II - A ends with a sequent whose
antecedent and succeedent contain a formula in common, we can modify the tree

to form a proof of M > A. Let T » A, II] > !_\.], ces HY+ !_\Y be a branch that

does not end with such a sequent. The topmost sequent II. - ﬁ\Y has only atomic

Y
formulas. Let ¥ (p) = T, for all {p} in T and letV (q) = F, for all {q} in

A . Then yi= HY+ b« We will show that if y I= I > A, then V= I, > 455
Y : _

for every i < v.
Let Y= T >A. Then¥ ¥ ATl or V= VA. So either there is a

formula L  in Tsuch that ¥ [75‘ L.y» or there is a formula M ; in 4 such that

_ v E M - So there is a formula L o in T with a gcs Gy for £L o such that
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Y(g) = F, for each g in Gy or there is a formula m o in & with a set M,

in nlo such that y(m) = T, for each m in MO. The sets G0 and MO are said to

testify to the truth of I -~ A. In a manner similar to that given in the sound-

ness theorem, we can find, for each i < w, sets Gi and Mi that testify to the

truth of Hi +—&i. Once again we find a sequent Hn + A such that no negation

o Mo

reductions are used onsequents M > Ays for k > ng- At this point we have Gn
0

and M testifying to the truth of I_ > A_ . (We assume, for simplicity,
ny Ny o

that G”O € g(£ nO) for some g in I, and that Mn{] e I g’ for some

0

nﬂ n in &n .) We can also show that, for each k z_no, G. M Alph(oﬁ__k) =
0 0 o

G, # # and M_ () Alph( Kn ) =M # @, for the appropriate predecessor formulas
k No k k _

e[L K and TY[k. Thus, by Lemma 3.8, there is a formula ll N in I, such that

G, M Alph( i
0

Mnoﬂ ATph( M )

w) =6 # 0, and a formula M p 1N A such that

Mm # 0. Thus Gtuand Mujtestify to the truth of Hm > aw.

So y k= I, ~ A . Continuing by induction, we find that y = Iy~ a.Y,the
topmost sequent. But this is a contradiction. Thus vy Et II -+ A, which is what

we wanted to prove. Q.E.D.
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SECTION 13: THE SYSTEM LJE}

In this section we introduce a logic Ldg_ which has many of the prop-
erties of an intuitionistic system. For simplicity we have made LJ@ a
propositional logic. There is no difficulty in expanding it into a predicate
Togic. In much of this section we mimic constructions done in Section 12.

We begin with a set A. If a e A, thena e &, a ¢ A, etc.

Ifpe AU AU A v ..., then p and ~p are called basic semi-statements,

We identify ~-p with p. (This is done here as an experiment and is not an
essential or necessary part of the system.) The set of basic semi-statements
is denoted B.

Let -C be a weave whose alphabet is a finite subset of B. (Notice that
L need not be normal.) Then L is a formula. If L = {p}, where

peAuUu AR U fu ..., then L s called an atomic formula.

We define connectives in Ldg in the following way. Let L be a set.
Then =L ={~ 2] & el},and —L ={{~ 2} | Le L}. Notice that —L is a
formula rather than a set. Let L be a formula. Then L ={=L|LeL
We define ~[ to be Q( - ). Let ‘f’l and ‘QZ be formulas_. Obtain 1?

from L 2 by adding, to the letters of 08_2, enough bars to insure that
Alph(L ) M Alph(L ;) = 0. Define L, v L , by Tetting it equal
GP\] v vﬂ—z Define c£1 A QC_ 2 by letting it equal cf_] A 1—2
If L1 and L2 are sets, obtain EZ by adding enough bars to the letters of L2

to insure that Ly M L, = 9. Let L} D L, be defined as ~— Ly v (L) Let
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'oQ]D onbe defined as /\ \/ L, D L.
Ledy Led,
The semantics of our system are defined as in Section 12.
If we 1ike we can add V and 3 to our system in the following way.
We replace symbols a of our alphabet by relatidﬁ symbols. If .,C(x) is a
formula with x as a "free variable", we define Vx f_(x) to be the formula

/\ L (c), where c ranges over all available constants. We define I x L(x)
c

to be v c,E_'(c), where ¢ ranges over all available constants.
c

We would 1like to make some observations about what we have done so far.
First of all, notice that UQ~> ~~£ is valid for every formula §_. This
is because ~~ { 1‘5 equal to g(-—: g_(-:J:)), which, in turn, is equal to
gg(‘ﬂ ), and g3(£ ) 242 , for every formula L. It is not the case,
however, that .. = 1is valid for every uQ . For instance let cﬂ be
{{a,b}, {c,d}, {a,c}}. Then gﬁ-(‘ﬁ ) is {{a,b}, {c,d}, {a,c}, {b,d}}. We
can let y(b) = ¢(d) = T and y(a) = ¥(c) = F. Then y E ~~L » but ¥ V“:Q, , SO '
!/ I;é ~e J’\ —>£ . It is in this sense that LJg resembles an intuitionistic
system. If L is normal, then gg( L)=L . So, for every normal weave
,,Q, we know that ~~ :,E +£ is valid. However, °Q need not be normal in
order for g%(‘ﬂ) to equal J. . Let aC be the weave {{a,x}, {a,d,b}, {b,y}}.
Then 3(.{1 ) = {{a,y}, {x,d,y}, {b,x}}, and gg(gﬁ) =L . However [ is
not normal, because {a,b} is a cs of J., and {a,b} is not a superset of any set
in Q(JL ). We can show,using cross sets, that there is no normal weave ,;,C'
such that L. & L '. 1If L < L', then <a,b, {a,x}, {b,y}> is a crossed
quadruple of J)'. Since we expect J. ' to be -normal, it must have cross sets.

So the set {x,y} must be in L '. But then {a,x}, {b,y}, and {x,y} are sets
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in Jz_’ SO <x,y, {a,x}, {b,y}> is a crossed quadruple of QCE'. Thus the set
{a,b} must be.in Jl '.  But then we have {a,b} and {a,b,d} both in Jz‘, and
this violates the Corollary to Lemma T.i.

We need to define a property for formulas that is analogous to normality

for weaves.

DEFINITION: A set S C B is compatible iff there is no letter a such that

a (n bars) and a (m bars) are both in S.

Observe that if y is a truth function, then {b ¢ B | v(b) = F} and
{beB | y(b) =T} are compatible sets. Likewise, by setting y(s) = T, for
each s in S (or by setting y(s) = F for each s in S), we get a truth-function

from a compatible set S.

DEFINITION: A formula J) is regular iff, for each cs C of L , if C is
compatible, then there is a set G < C such that G e é; (L).

We want to show that the sequent + L, ~L is valid iff c[L is regular.
Let J:h be regular, and let y be a truth-function. Assume that ¢ Eé‘ﬁl .
Then { & e Alph(L ) | w( 2 ) = F} is a compatible cs of‘Ll . By the regularity
of L » this set has a subset G such that G e __(41_). So y(g) = F, for each g
inG. Soy(h) =T, for each h in —G. But - Ge ~/L . Therefore y = =
Now we assume that L is not.regular. Let C be a compatible cs of [0
such that there is no set G in gi(J: ) satisfying G < C. Define a truth

function ¢ by letting w(c) = F, for each ¢ in C, and ¢(d) = T otherwise. Then

VL ,'andw‘?{-wuﬁ. So > L, ~ L is not valid.

T e e e —
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If L is a tautology, this means that there is no truth-function Y such
' that y \5& L, so there is no compatible cs of OQ . So o s regular.

We show that the possible rule of inference

n-A,L
'vdls m-=A

is sound. If y E T -+ A, L , then either v 5& Alory = VA vL£ . If
v = Allor v = V 4, then we are done. If ¥ =L , then there is a set L
in £ such that y( 2 ) =T, for each 2 e L. For any set G in CQ(,,C ),

GMN L#P. Thus, for any G ¢ g}(tif), there is a letter 2 such that

Y( &) = T. Thus, for any set H in é? (—d), which is equal to ~d , there is
a letter ~% such that y(~ &) =F. Soy b ~L o Thus Y = ~ 2, T > A.

We show that the possible rule of inference

GQ, H+A

T4, -4

does not always hold.

DEFINITION: A formula £ is F-regular iff for each cs C of £ , if C is
compatible, and C € F , then there is a set 6 < C such that G e 3 (L ).

We have been given a sequent I + A and a formula £ . Let F =
{{e e Alph(L ) | w( o) = F} | ¥ B£ T > A}, We claim that the above rule
of inference holds iff oC is F-regular. The rule holds if the following is

true: for each y, ify = A I and y 17_‘ Y A, then either y = ~ [ or
v = L . This, in turn, is true iff, for each v, if y HE 1> A, then either

*——————
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vV =L orvy ~L - Let OQ be _# -regular, and assume that y g:r_/- I->A
and that ¥ hﬁ:ll . Then {g € Alph(L ) | v(®&) = F} is a compatible cs of
£ and is also a member of F . So we have a subset G of this set, and
¥(g) = F for each g in G. So y(h) = T, for each h in — G. Since -G is
in-L,vE-L

Now assume that [ is not F -regular. Let C be a compatible cs of aﬂ y
such that C ¢ F , and there.is no set G in gl(Jl ) satisfying G € C. Define
v by lTetting y(c) = F, for each ¢ in C, and y(d) = T otherwise. Since C is not
inF,vHET >a. Alsoy E# Jl , and ¥ hﬁ ~J - Thus the possible rule

of inference

1

L, 104

I->4, ~d

does not hold for this formula {. .
We define a proof system for Ldéi .
If L is a formula, then £ >  is an axiom.
The structural rules of inference are those of LAb.
The Togical rules are as follows.

(1)  The negation rules are

:left s, L and

~ oC,H—»Q
L
~:right 0 e N
-4, ~&

We insist, in .:right, that 4 be F-regular, where F = {{g e Alph( L) ]
vl o) = F} [ v B 1~ a4
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(2) There is a double negation rule. It is

m->A,L
M+ A, ~~d.

If we choose not to identify ~~p with p, for all pe AUAUAU ..., as we
did in the beginning of this section, we must also add the rule

L, T+ A

e LT A

for all formulas L. satisfying L= gg (L ).
(3) The conjunction and disjunction rules are the same as in LAb.

(4) The implication rules are

m-+A4, L} OQ‘Z’ o>V
o left " and

J‘\] DL, e, Y

Ll,ﬁ—>f_\,£2

S:right .
m~>A, OQ] o 08_2

(5) There are two substitution rules. They are

L, I~  and m->aL
L', 1->4 T>A, L2

where L ' is obtained from L by adding or deleting some bars from occurrances
of letters that appear in i . -
If we want LJQ to be a predicate calculus, we add the standard Gentzen-

type rules for ¥ and 3 . (See [7].)
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THEOREM 13.1: The system LJEl is sound.
This is proved by a routine induction.

THEOREM 13.2: The system LJE} is complete.

PROOF: Let I - A be a sequent. We construct a tree fbr II > A which we call a
reduction tree, and use this tree to obtain a proof of I -~ A, or to show that
I > A is not valid.
We construct the reduction tree in stages.
Stage 0: We write I -~ A at the bottom of the tree.
Stage k (If k=m (mod 11), then m is the parity of k.): We stop
if every topmost formula has either
(i) a formula common to its antecedent and succeedent,
(ii) a formula and its negation in the antecedent,
(iii) a formula J) in the antecedent and E%g (L ) in the succeedent, or
(iv) a regular formula and its negation in the succeedent.
If not, we divide into cases depending on the parity of k.
(0) This is the same as the case of "parity of k equals 1" in the proof
of completeness for LAb.

(1) This is the same as the case of "parity of k equals 1" in the proof
RIS le be F.-regular,

where E}i = {{ ¢ eAlph(~ L 1.) | w( 2 ) =F} | 9 B~ @ > ¥}, for i from 1 to p.

of completeness for LAb, except we insist that ~ o

(2) This is the same as "parity of k equals 2" in the completeness proof
of LAb.
(3), (4), and (5) These are all the same as in the completeness proof of

LAb.
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(6) If the parity of k is 6, let & > ¥ be any topmost sequent of the tree
which was defined at stage k - 1. Let oﬂ ] = m 1 cees \ﬂ b D m D be all

formulas of & whose outermost connective is 2, and to which no reduction has

been applied in previous stages. Then above ¢ -~ ¥ write down & + ¥, E
®+‘P,q&2, ...,¢+1P,0Qp,and m],...,ﬂ(p,@-r‘}'.

(7) If the parity of k is 7, let ® » ¥ be any topmost sequent of the tree
which was defined at stage k - 1. Let L] D m], s °Qp - n/(p be

all formulas of ¥ whose outermost connective is 2, and to which no reduction

has been applied in previous stages. Then write L 12 L o oo L o’ d > v,

th, M., ..., ﬂlp above ¢ + V.
(8) Let .C], cees UQ p be all formulas in ¢ that are non-atomic and in-
decomposable. Obtain gﬂl', a=ugy c£pl from o{)], cees uﬂ D respectively, by

adding bars to some occurrences of letters so that Jl]', N p‘ are all

decomposable. Then, above ¢ + ¥, write down oQ]‘, mxy Qp', o* > ¥, where
¢* is obtained from ¢ by removing oQ], s cﬂ .
P

(9) Let "QI’ . ”Qp be all formulas in ¥ that are non-atomic and in-

' from vﬁ], ey £

decomposable. Obtain oQ]', any W “respectively as

p p
in (8). Then, above & » ¥, write down & > W*, eQ]', cees Lo p" where ¥* is

obtained from Y by removing °Q1, xwey o b

(10) If ¢ » Y satisfies any of the conditions (i), (i), (iii), or(iv) given
at the beginning of this proof, or if none of (0) through (9) apply to & - v,

then write nothing above ¢ - VY.
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INDEX OF DEFINITIONS

Admissible, 50
Alphabet, Alph( (), 2
Atomic formula, 106, 118

Bar variant, 107

Basic semi-statement, B, 106, 118

Choice set, cs, C (L), 3
Clique, 88

Compatible, 120

Comp]etion, 72

Coﬁponent, 35

(Direct) Conjunction, i , 15
Continuing, 33

Coverable, 94

Crossed quadruple, 66

Cross set, 66

Decomposable, 33

Degree of normality, 100, 101
Determined game, 10

Direct subalphabet, 36

(Direct) Disjunction, V , 15

“3L,3 R", 46

Extension, 78, 79

Final node, 33
Finite play, 9
Formula, 106, 118

Gale-Stewart game, 7
Good choice set, gcs,

Graph, graph(ll), 88
Graphable, 89

Having cross sets, 66

Indeterminate set, 70

Isomorphism, 79

X, 75

~

MIL , 88
L£(+), 89
[L], 100
LAb, 106

Larger than, 80
Letter, 2
Level, 33

Lag , 118

Maximal clique, 88

g(&), 3, 94
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If each branch of the reduction tree for II - A ends with a sequent which
"satisfies one of the conditions (i), (ii), (iii), or (iv) given in the beginning
of this proof, we can modify the tree to form a proof of I -~ A. Let II -~ A,

Il

> a], - Ht - ﬁt be a branch that does not end with such a sequent. The

1
topmost sequent Ty > b, has only atomic formulas. Let ¥(p) =T for all {p} in
I, and let y(q) = F for all {q} in Ai- Then Ht My > Ay. As in the complete-
ness proof for LAb we show that if ¢ =1 » A, then ¥ = M > ai for every i

from 1 to t. Thus ¢ hﬁ II ~ A, which is what we wanted to prove. Q.E.D.
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" I-node, II-node, 33 T, 3
Normal, 33 . Tensor product, 7, 8, 59
}—norma], 7 Trivial, 3

Normal equivalent, 99
Unstopping, 84
Normal in, 99

Normal tree, 75 Valid, 107
Parity, 33 Weave, 2
Part company, 57 Weave game, 9
Play, 9

[X1, 100

Predecessor, 107

L(L), 101
Prefnormal, 63
Proof, 111

Proper direct subalphabet, 38

Reduction tree, 115
Regular, 120
Fregular, 121

LA, (restriction operator), 34

Sequent, 107

z 33

1* 2110
G, 9
Smaller than, 80
Stopping, 83
Stopped, 33
Strategy, 9

Subalphabet, 34
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