THE SPEED OF AN
INFINITE COMPUTATION

By BARRY ABRAM BURD

A thesis submitted to
The Graduate School-New Brunswick
Rutgers, The State University of New Jersey,
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Computer Science,

Written under the direction of
Professor Ann Yasuhara

and approved by

%ﬂ %4@/4/@

d=j;iZQﬁh!€Fﬁbww*<:: (;écéJZfi

New Brunswick, New Jersey

May, 1984

ABSTRACT OF THE THESIS
The Speed of an Infinite Computation
by BARRY ABRAM BURD, Ph.D.

Thesis Director: Professor Ann Yasuhara

The definition of a Turing Machine is generalized so
that the machine performs compuations that have infinite
input, and take infinitely many steps. The notion of an
Algorithm is similarly generalized. W present an infinite
algorithm that finds the real-number Iimit of an infinite
sequence of rational numbers. The worst case runhing time
of this algorithm is w2. W show that this algorithm 1is

time-optimal for the given problem.

'TABLE OF CONTENTS

0. Introductionoo'qo00000..0.0-I.oo‘o.too..-u.o.o.oooo 1

l. Definitions.o..ocblr000"ttooooou'oo‘00.c...¢¢oo.oo. 8

1.1 Augmented and infinite Turing machines 8
1.2 Augmented and infinite algorithms 16
1.3 Notes on the literature 26

2. Limit of a sequence of rational numbers, sueassuee.. 34
2.1 Definition of the problem ’ 34
2.2 Solution of the problem = intuitive explantion 36
2.3 Solution of the prdblem = technical details 47

3. Limit of a sequence of positive integers. casauuesss 65

3.1 Definition of 'the problem 65
3.2 Proof of an easier result 68
3.3 Proof of the main result 76
3.4 One further result 105
References,.,...... P 1011

Vlta oc‘.oloot.0.'.00.000.'00..0.00.00‘0..0..0..0..109

iii

0. Introduction

In this paper we generalize the notion of a 'computa-
tion" to include a process whose execution may require
infinite time and infinite space. Various other notions of
"infinite computaion®™ have been proposed in the literature.
(See references [2] through [81.) W will discuss these and

compare them to the model proposed here.

The intuitive idea behind our model is to consider a
Turing maehine with finitely many states, a finite alphabet,
infinitely many non-blank symbols on its input tape, and an
infinite amount of time to perform its computation. Thus
the problem given to the machine can be infinitely large,
and the machine can take an infinite amount of time to solve
it. One consequence of the "infinite time" property will be
that any given square of the machine's output tape can be
written on infinitely often. This point will be discussed
Iin detail when we give the formal definition. Our defini-
tion will then be extended to include computation by a fi-

nite sequence of such machines. Roughly speaking, the out-

put tape of one machine will be the input tape for the next
machine .
In this paper we will investigate certain aspects of the

power of these machines. The motivation for this effort is

twofold :

(1) Most of the theorems in the conventional theory of
computation describe limitations on the power of a particu-
lar class of machines. These theorems owe their existence
to the requirement that computations take a finite amount of
time. W are interested in knowing what limitations, if

any, are inherent in infinite machines.

Certain set-theoretic limitations are immediately
obvious. For instance, let 4y be the smallest uncountable
ordinal and let s be a function from wq into the set of in-
tegers, The function s defines an uncountably long sequence
s(0), s(1), Let S be the collection of all such se-

quences, Let Sy be the sub-collection of 8 satisfying

s € Sg iff 3 ordinal i<wq such that s(i) = 0.

Now consider any "reasonable" definition of an infinite-
time Turing machine. Let T be such a maohine. If T has
uncountably many squares on its input tape then a sequence
s, from S, can be written in its entirety on the input tape
of T. In order for T to solve even the simplest problem

such as

given s on the input tape of T, with s ¢ S, determine

whether s ¢ Sg

T must be allowed to perform uncountably many steps. Qiher-
wise, T cannot solve the problem. Although this observation
identifies one of the limitations of infinite Turing ma-
chines, 1t is by no means a profound observation. The ob-
servation depends on the set-theoretic properties of T

rather than on the computational properties of T.

Wh n ve undertake to define the notion of an infinite-
time computation, our immediate concern is of the fol-
lowing sort: A machine that can perform infinitely many
steps is surely very powerful. Is it possible that the
only limitations on the power of such a machine are set-
theoretic in nature? |1f so, our definition may be doomed to

triviality.

(2) There are processes that arise naturally in mathema-
tics which require an infinite amount of time to execute.
These processes would be considered "algorithms" but for the

lack of finiteness. Here are a few examples:

Let f be a function defined on the real interval [0,1].
Assume that the value of f on any argument can be computed
in finite time. (This assumption #s neither reasonable nor
necessary. It will, however, make the technicalities of our
example easier to digest. The interested reader can gene-
ralize.) W can find the integral of f, from 0 to 1, by

taking successive approximations. Let s(1) be £(0). Then

s(1) approximates the integral of f£(x) from 0 to 1, by di-
viding the area under the curve inte one big pieoe. Let
s(2) be (0.5)-£(0) + (0.5)+f(0.5), a better approximation
obtained by dividing the area into two pieces. Generalize
this for arbitrary s(i), where i is a positive integer.
With a finite algorithm, we can compute arbitrarily good
approximations for the value of the integral of f. The
actual value of the integral is the limit of the sequence
s(1), s(2), ... « If R is an infinite-time algorithm that
aomputes s(1), s(2), ..., s(i), ... for all positive ints-
gers i, then R may, after infinitely many steps, yield the
value of the integral. of f. In Section, 2 we will see how to
define an infinite algorithm to compute the limit of an in-
finite sequence, Given that, the design of algorithm R is

straightforward.

One can "construet" the algebraic numbers using an in-
finite process. Let Q be the set of rational numbers. Let
Qlx) be the set of polynomials in x over Q. Choose p(x) in
Qlx]. Let Q¢ be Q[x1/<p(x)>, where <p(x)> is the ideal of
Qlx] generated by p{(%x). Choose q(x) in Qq and let Q> be
Qq1[x1/<q(x)>, and so on. Using,a canonical homomorphism,
we can consider Qi to be a subset of Qj,1, for each positive
integer i. Let A be an infinite-time algorithm whose input
is Q. At each "step" in the execution of A, the algorithm
examines Q4 and replaces it with Q;,4. After infinitely

many such steps, algorithm A produces the set YjQ4, which

is - precisely the set of algebraic numbers.

Notice that the input to this algorithm is an infinite
set (the set of rational numbers). The output of each step
of the algorithm is also an infinite set. Each step of the
algorithm examines infinitely many input symbols and prints
infinitely many output symbols. The algorithm A will have
infinitely many steps, each taking an infinite amount of
time. In Section 1 we will use dovetailing to compress many

infinitely long steps into one infinitely long step.

Both of the above examples illustrate the same point:
that some so-called "pure existence" definitions in mathe-
matics are actually algorithms that require an infinite

amount of time and space.

In [1] we have an infinite process which decomposes an
infinitary boolean polynomial into its normal form. The
ianput to the process is a statement in the infinitary homo-
geneous propositional calculus. The process goes through
infinitely many iterations. At the end of each iteration
the statement is rewritten in such a way that a larger sub-

statement of the original statement has been converted into

“"normal form", In this case, “"normal form" means that no
atomiec variable in the sub-statement occurs more than once.
After infinitely many iterations, the entire statement is

in normal form. In [11, as in the literature on Riemann

[

sums and algebraic numbers, the output of the process
after infinitely many steps is understood by virtue of a
particular mathematical context (i.e., the limit of an
infinite sequence, the union of infinitely many sets, ete.)
In this paper we give a general definition, in terms of
Turing machines, to describe the output of an infinite

computation.

Section 1 of this paper defines an infinite Turing ma-
chine, setting the stage for the analysis of an infinite-
time computation. In 'this section we also relate our defi-

nitions to the work of others (references (21 thr'ough [81).

In Section 2 we present an infinite algorithm to solve a
common mathematical problem = the calculation of the limit
of a sequence of rational numbers. Of course we cannot use
the algorithm to "solve" the problem in the usual sense,
since no real-world computer can read in infinitely many
rational numbers and, after infinitely many steps, produce
an output. Instead wWe can take the algorithm as a new defi-
nition of the limit concept. (In reviewing the standard e=-s
definition of a limit, we are tempted to believe that its
creators modeled the definition after some more intuitive

notion of an infinite process which makes the sequence "go

to" its limit.)

In Section 3 we prove that finding the limit of a se-

guence of integers requires «2 + k time, where k is a finite
non-negative integer, and « is the smallest ordinal greater
than any finite non-negative integer. \Since'the notion of
an algorithm plays an important role in the proof of the
resulf, the proof' helps to quiet our concern that all limi-
tations on the power of infinite computations are set-

theoretic in nature.

1. Definitions

1.1 Augmented and infinite Turing machines

W begin with a standard definition of a deterministic

on-line Turing machine.

Definition. A finite Turing machine is an 8-tuple

(States, initial- state, Input- Alphabet, Output- Alphabet,
fnext-state: X + States,
fnext-symbol® X -~ Output- Alphabet,
fnext-move-of-tape-in* X - {right, left),

fnext-move-of-tape-out X » (right, left, halt}>,

where States, Input- Alphabet and Output- Alphabet are dis-
joint finite sets, initial- statee States, and X = States «x

Input- Alphabet x Output- Alphabet.

Our Turing machines have two one-way infinite tapes: a

read-only tape for input, and a read/write tape for scratch
work and output. Thus, an instantaneous description (i.d.)
of a finite Turing machine is a 5-tuple of the form

{state, tape-in, position-in, tape-out, position-out),

where state-is an element of States (representing the

current state) ;

tape-in i1s a sequence of elements of the Input-
Alphabet, all but finitely many of which are
blank (representing the string of symbols on the
input tape = since the input tape is a read-only
tape, this sequence does not change at any time
during the computation);

position-in 1s a positive integer (representing the
current position of the read head on the input
tape, with the leftmost square counted as posi-
tion' 1);

tape—out is a sequence of elements of the Output-
Alphabet, all but finitely many of which are

blank (representing the string of symbols cur-

rently on the output tape); and

position-out IS a positive integer (representing the
current position of the read/write head on the -
output tape, with the leftmost square counted as

position 1).

At time 1, the instantaneous description of the machine is

(initial- state, tape-in, 1, sequenoe-of-blanks, 1>,

At time n+1, the machine uses the i.d. of time n, and the

four functions fpext-stater fnext-symbol:s

fnext-move-of-tape-in,» and fpext-move-of-tape-out in

10

order to determine the i.d4. of time n+1.

Let T be a Turing machine, and let s be a sequence of
symbols. The action of T with s on its input tape is de-
noted T(s). If t is a positive integer, then the sequence

of symbols on the output tape of T at time t 1S denoted

tape—OLHi(S)‘ Since tape-outi(s) ;o jisaif 4 sequence

of symbols, the i*M entry in this sequence can be de-

noted tape—-oug(S)(i). Subscripts and/or superscripts

will be omitted when the context permits. Similar notations
such as Statei(S) and pOSHion—OLﬂi(S) will be

used when appropriate,

To define an augmented Turing machine, Tp, we modify

the definition of a finite Turing mauhine in two ways:

(1) W allow tape-in'A to have infintely many non-blank

symbols, and
(2) W define tape~out at time » as follows:

If Ty never halts
then tape-outzA is the sequence tape—outzA(1),
tape-outiA(2), ..., where, for each
positive integer 1,

if there is a symbol, x, and an integer, n,

T

. such that tape—outt

A(1y = x for a1l tzn

11

it

X A
Mplur®

then tape- outV'IV'A(i)
else tape—outlﬂ(i)

n

else tape—out;!’A is undefined.

In the above definition it is assumed that "blur® IS a sym-
bol, and "blur™ is not an element of the Output- Alphabet of
Tp. Notice that tape-out may have infinitely many non-

blank symbols at time w.

T
If tape-outw® is defined, for some value of tape-inTA,
then we say that the worst case running time of Ty is w.

Otherwise the worst case running time of Ty is finite.

Intuitively, an augmented Turing machine IS one whose
input and running time can be of size w. The problem given
to Ty can be infinitely large, and T, can take an infinite
amount of time to solve the problem. After the entire run
of Ty (at time w), the content of a square on the output
tape s non-"blur"™ if and only if, at some time during the
run of Ty (i.e., before time w), some symbol is written on
that square and is never changed thereafter. V¢ can think
of the "blur" symbol on a square as the situation where the
content of th;a square never "settled"™ on any one particular
symbol. Looking at the square at time w, one sees the fuzzy
overprinting of symbols that changed infinitely often during
the run of Ty and calls this a "blur®, Since the "blur"

symbol is not,an element of Output- AlphabetT™ machine Tp

12

cannot decide, at any finite time during its run, to write

"blur™ on any square of its output tape. Thus “pblur" is
very special output symbol for T,.

a

The decision to have separate tapes for input and output

IS quite intentional. We do this in order to allow the aug-

mented Turing machine to write an unbounded (or even infi-
nite) amount of output without having to (a) destroy the in-

put, or (b) take time to move input symbols to make room for
the outputb.

Note that an augmented Turing maohine has finitely many
states, a finite input alphabet, etc, One can write the

instructions that prescribe the action of an augmented

Turing machine on a finite amount of paper.

Example 1. There is an augmented Turing machine, H, which
solves the halting problem for finite Turing machines. For
any finite Turing machine, T, let tape-inH contain the
8-tuple describing T, and a copy of tape-inT. Let
Output-Alphabett = Output-AlphabetT y {*T-nalts",
"T~does-not-halt"}. Machine H begins by writing

"T-does-not-halt" on tape-outB(1). Then H simulates the

action of T on input tape-inT, using squares 2,3,4,... of
tape-out for scratch and output. Machine H never changes
the symbol on tape-outh(1) unless T halts. If T halts at

time n, then H changes the content of tape-outf(1) to

13

"T-halts", and, from time n+l on, performs some harmless
nonsense action (e.g., It idles in some special state). At
time «, one can determine whether or not T halted by exami-

ning tape-outf(1y,

At this point we extend the definition of a Turing ma-
chine even further by forming a sequence of augmented Turing
machines. Each machine in the sequence produces an output
tape, which Is supplied as part of the input to the next
machine. For the moment let us call these two adjacent ma-
chines the predecessor machine and the successor machine.
The successor machine is capable of reading the input and
output symbols of its predecessor. In addition to reading
symbols in the predecessor's Output- Alphabet, it reads the
"blur" symbol on squares where "blur® was produced by the
predecessor. Whereas "blur" was a special output symbol for
the predecessor machine, we will see in the formal defini-
tion that "blur™ is treated as an ordinary input symbol to

the sucecessor machine.

Definition, Let T be an augmented Turing machine. W define
the union of tape-inT and tape-out! as the tape obtained by
combining the squares of tape-inT and tape-out! in alter-

nating fashion. More formally, for any positive integer i,

14
/
ltape—inT(i/z) if i is even
|
(tapefinT u tape-outT)(i) = %

tape-outT((i+1)/2) if i is odd {
\ ' 5 |

~

Definition. Let T4, T5, «.., T, be a finite sequence of

augmented Turing machines satisfying

Input- AlphabetTi+1 = Input- AlphabetT:
Output- AlphabetTi y {"bilur"}

for each i from 1 to n-1, Then the sequence is called an
infinite Turing machine. For each i from 2 to n, the ini-

tial i.d, of T; is

(initial- stateTi, tape-inTi=1 y tape-—outIi-1, 1

’

sequence-of-blanks, 1>

if tape-outTi-1 1S defined, and
w

(initial-stateTi, tape-inTi-1 tape-outfi-1, 1,

sequence-of-blanks, 1>
if Ty.q halts at time ¢t.

The idea of taking the union of tapes is somewhat con-

trary to, our notion of the action of a computation. After
an augmented Turing machine has performed « steps, some un-
seen agent magically copies infinitely many symbols in com-
bining the machine's input and output tapes. W could over-
come this difficulty by allowing each augmented machine to
have more than one input tape. V¥ chose not to'do this in
order to keep the notation as simple as possible. The main
thing to keep in mind is that an augmented (or infinite)
Turing machine does not destroy its input tape. The input
tape is available for examination by the next machine in the

sequence.

W now define a notion of "running time" for infinite

machines

Definition. Let T4y, ...,T, be an infinite Turing machine.
Let k be the largest integer satisfying

there is a sequence of symbols on tape- inT

T that forces
k of the n augmented machines in Tq,...,T, to have run-

ning time w.

Then we define the worst case running time of Tq,...,Ty to

be wk.

Example 2. Let s be an infinite sequenoe of positive inte-

gers, and Tq be an augmented Turing machine with

Input- Alphabet {0,1,2,..4,9,"comma","blank"}, Sequence s

can be encoded on the input tape of T by writing one digit
per square, beginning with the leftmost square, using the
comma as a separator between integers. We want Tq to

help decide whether sequence s contains infinitely many oc-
currences of the number 42, To do this, we make the
Output- Alphabet of T4 contain the symbols "even" and

"odd". Machine T4 begins by writing "even" on
tape-outT1(1). Then it reads tapeainT1, examining the
integers of s in order until it reaches a 42. At that time
it changes the content of tape—OLHT1(1) to "odd". The
machine proceeds to examine sequence s, changing its mind
about the number (mod 2) of occurrences of 42 whenever it
encounters a 42, At time w, machine Ty, examines
tape-‘Ou'ﬂT1(1). If it reads "even" Or “odd", It prints
"finite" on its output tape. If it reads "blur", it prints

"infinite",

The worst case running time of T4,T, is w. Clearly this
is optimal performance for the given problem.

1.2 Augmented and infinite algorithms

Waving defined infinite Turing machines, we can use

Church's thesis to talk about infinite algorithms. An

augmented algorithm can have infinite input, and can have a

defined output at time w. During any finite portion of its

execution, an augmented algorithm can do anything that a
finite algorithm can do. An (infinite algorithm} is a finite

sequence of augmented algorithms.

Our algorithms will be written in a Pascal-like
language. Our goal, in using the language, will be to
make the writing of algorithms as independent as possible
from the details of machine operation. In the following

paragraphs, we describe the ways in which our algorithm

language will differ from Pascal.

W will omit the explicit use of the Pascal tokens
"begin" and "end". Instead we will use informative indenta-
tion. The end of a line, rather than a semicolon, will be
used as the statement separator. W will often replace the

exact syntax of Pascal statements with statements written in

"rigorous English",

In addition to the standard Pascal constructions, we

define

For 1:=1 toward w

S

to mean

Let i:= O

While i<w do

1:=1i+1

S

where S Is a statement, or sequence of statements.

W also enhance standard Pascal with the following con-

struction for dovetailing:

Let k be any positive integer, Let s4,35,... be statements,
or sequences of statements. Let each of S4,35,... take wk
time to execute. Assume that successful execution of any of

81y82,... does mot depend on the execution or results of any

of the others. Then let the notation

Dovetail
[s41
[55]

End-dovetail

have the obvious meaning. Since S4,85,... each take wk
time, the whole dovetailed computation takes wk time to

execute .

The Pascal token "var' will be used to declare all

variable names and their types. The values of all variables
Will be read from an input tape, or read from, and printed
on, an output tape. For instance, the declaration

var v: digit

will mean that the effect of an assignment statement, such

as

Let vi= 0
is to write the digit symbol "0" on that square of the out-
put tape which is reserved for the valiie of v. The effect
of a statement such as

Let vi=z X + ¥
is to read the values of x and y from an input or output
tape (wherever they are recorded) and write their sum on the
square of the output tape reserved for the value of v.

We will use abbreviations such as

var {vi}'i”_1 : sequence of digits

var r: infinite decimal expansion.

These two declarations are equivalent, since an infinite
decimal expansion is an infinite sequence of digits. The
only differenae is that in the first declaration, the
entries of the sequence are named separately, while in the
second deolaration, the sequence itself is named. Either
declaration can be taken to represent a real number between
0 and 1, To represent a real number in any particular algo-
rithm, we will use either of the above methods, whichever is

notationally more convenient,
The multiple declaration

var {vy}_. : sequence of digits

r: infinite decimal expansion

saves space on the tape for two infinite sequences, By re-
ferring to the definition of an augmented Turing machine, we
see that the length of the output tape isSsw. In order to
fit two infinite sequences on this tape, we have to print
the digits of the sequences in alternating fashion. For in-
stance, we can reserve even numbered spaces for the digits

y °f r, and odd numbered spaces for the vy digits.

As an example of the use of our notation for infinite

algorithms, we consider the following:

‘'var r: infinite decimal expansion

For i:=1 toward

let r:= ,..{some expression)...

The variable r represents a real number whose digits are
re-computed each time through the loop. Let 18t_digit(r) be
the digit of r which is immediately to the right of the de-
cimal point, That digit occupies a square on the output
tape. If the digit-symbol on that square changes only fi-
nitely many times during the execution of the loop, then at
time w, after the loop has been executed in its entirety,
TSt—digit(r‘) IS a certain digit. | f, however, the content
of the square for 18%_digit(r) changes infinitely often
during the execution of the loop, then that square has
"blur" in it at time o, Therefore, at time v, an output
tape variable, or a part of an output tape variable, can

, have the value "blur®, regardless of the manner in which it

was originally declared.

As in the language Pascal we will use subprograms to

A sub-
program is either a Funation, which returns the value of a

divide our algorithms into their logical components.

specifie variable, or a Procedure, which does not necessari-

ly return the value of a specific variable. "Atypical sub-

program will be presented in the following form:

var ...{variables used in Function F that are declared

in the program which calls F}
Function F(...{argument list)...):,,.{type of the result)

| var ...{variables which are local to Function F}

{executable statements in the body of Function F}

exit from F.

In the use of subprograms, the reader is warned of the
\ following two facts:
|

(1) there is not necessarily a one-to-one correspondence

)

between subprograms and augmented Turing machines,

and

(2) there 1s not necessarily a one-to-one correspondence

between var declarations and augmented Turing machine

tapes.

These points are illustrated by the next example.

Example 3. Consider two procedures, P and Q, written as

follows:

Procedure P

var ip,jpiinteger

for ipi=1 toward w

for jp:=1 toward e

Procedure Q
var iQ,jQ:integer
for igi=t toward

for jQ:=1 toward

These two procedures may be called simultaneously by a pro-

gram as follows:

Program MAIN

Dovetail
[call P}
[call QI

End-dovetail

Execution of Program MAIN will take place in two parts, each
part taking » time. In the first part, the “For ip" loop of
Procedure P and the "For ig" loop of Procedure Q are exe-
cuted simultaneously. In the second part, the "For jp" loop
of Procedure P and the “For jgo" loop of Procedure Q are exe-
cuted simultaneously. Implementation of Program MAIN by
augmented Turing machines will involve one augmented machine
to execute the "For ip" and "For ig" loops, and another aug-
mented machine to execute the "For jp" and "For jqo" loops.
So the augmented machines do not correspond to Procedures

P and Q. Let us call these machines T; and Tj.
Let us look at Procedure P in slightly more detail:

Procedure P
var ip,Jjpiinteger

a :integer

for ip:=1 toward w

a.= . e

for jpi=1 toward w

a:= a1t aas

The variable a is declared only once, but its values are re-

corded at different times on at least three tapes:

(1) the output tape of Ty,
(2) the input tape of Ty, and
(3) the output tape of Ty

Depending on our conventions, we may choose to consider
items (1) and (2) to be the same tape. Notice, however
that one var declaration defines part of the content of

more than one tape.

In spite.of the long list of notational conventions,
there is a small number of principles which, taken together,
describe our notion of an infinite algorthm. These prin-
ciples can be stated as follows:

An infinite algorithm

(1) has a.finite input alphabet, but may receive as its

it

input, an infinite sequence of input symbols;

(2) has a finite output alphabet, but may write, as its

output, an infinite sequence of output symbols;

(3) may perform infinitely many steps in order to complete

the computation; and

(4) can be described by writing a finite set of instruc-

tions.

as a footnote to item (2), we add that an infinite algorithm
is composed of a finite sequence of augmented algorithms,
and that each augmented algorithm has a special output sym-

bol "blur", which it may not write during any finite step in

the course of its execution.

1.3 Notes on the literature

The literature on finite- state machines contains many
examples of attempts to extend the definition of "computa-
tioen"™ in an infinite way. One such effort appears in [2].
In that work, Muller defines an infinite sequential machine
as a modification of the deterministic finite automaton.
Muller's machine is like the finite model in all respects

except one; namely, that the usual set, P, of accepting

27

states is replaced by a collection, F, of sets of states.
Mullert®'s machine, M, has finitely many states, so if we give
it an infinite sequence of symbols (an infinite input string
X), Tt will enter certain of its states infinitely often.
Let Inf(x,M) be the collection of states entered infinitely

often upon the input of x to M. The string X iS accepted by
M iff Inf(x,M) ¢ F.

Muller's infinite ‘sequential machine is strictly weaker
than our infinite Turing machine. To see this, consider the

following example:

Example 4, Let s be an infinite sequence of positive inte—
gers. Following our notational conventions. we let s(1) be
the first kntry in s. W want to determine whether s(1)

occurs infinitely often in s. W call this the "s(1)-

problem",

It is easy to 'define an infinite Turing machine to solve

the s(1)-problem. To do this, modify Ty of Example 2 by
having it compare each integer of s with s(1) rather than
42. No other modification is needed. (Note: W may ehoose
to compare each s(i) to s(1) by having the input tape head
of T4 move back and forth between s(1) and successive
entries s(i). Since s(1) 1S the leftmost integer on the
tape, the amount of tape movement increases as i becomes

large. To avoid that backtracking on the input tape, we can

28

) begin the computation by writing a copy of s(1) on the out-
put tape. Then we simply compare each s(i) on the input

tape to our copy of s(1) on the output tape. Although this
new scheme seems more efficient, it will result in no time
savings on the infinite scale. The computation will take w

steps either way we do it.).

There is no Muller infinite sequential machine which can
solve the s(1)-problem., To see this, let M be an infinite
machine in the Muller sense. Let s be the infinite sequence
<s(1), s(1), s(1), ...>. If M solves the s(1)-problem, then
M accepts sequence s, so Inf(s,M) ¢ F. Let M be in state q
after reading the first s(1). Machine M has finitely many
states, but s(1), the first entry in s, can be any one of
infinitely many distinct positive integers. Thus there is
an integer s(1)'#s(1) such that M would be in state q after
reading s(1)*. Let s' be the infinite sequence <s(1)"',
s(1), s(1), s(1), ...,>. Since s(1)' occurs only once in
g', M should not accept s*'. But M is in state gq after rea-
ding s(1)*. Thereafter, M behaves exactly as if it were
reading sequence s. Therefore M accepts s'. This is a con-

tradiction. 0O

In [3] Buchi defines an infinite sequential machine
which is shown by McNaughton C43 to be equivalent to

Muller'ts model. In [5] Rabin uses the Buchi automaton to

prove the decidability of the second-order theory of two

)

successor functions (S2s). Rabin begins by extending

Buchi's definition to that of an automaton which accepts an

infinite binary tree. (We call this a Rabin automaton.)

He then shows that

(1) For the class of Rabin automata, the emptiness problem
(Given automaton R, IS there a tree that IS accepted

by R?) 1s decidable; and

(2) For every formula, F, of 3523, there is a Rabin automa-
ton, R, such that F is true iff there is an infinite

tree which is accepted by R.

We proceed to show that (1) does not hold for the class of
augmented Turing machines. In the theorem and its proof,
"decidable" and "undecidable® have their usual meanings,

namely, the existence or non-existence of a finite Turing

machine to solve the given problem.

Theorem 1. The emptiness problem for augmented Turing ma-

chines is undecidable.

Proof. W define an effective procedure that turns the de-
scription of a finite Turing machine, T, into that of an
augmented Turing machine Hy. Given T, let Hy begin

by writing "does-not-acecept" on its output tape. Then for

x, a finite string of symbols which we intended to give to T

)

)

as input, Hy simulates the action of T on X. If T halts

in an accepting state 'then Hy ohanges "does-not-accept™

to "accepts", and idles until time ¢, |If T halts in a non-
accepting state, then Hy idles without changing the sym-
bol "does-not-accept". If T never halts, then Hp sim-

ply simulates T until time w.

Clearly Hp accepts X if and only if T accepts X.
Furthermore #y is an augmented Turing machine. Even
though the action of an augmented machine is infinite, the
description of such a machine is always finite. (I.e., an
augmented Turing machine has finitely many states; a finite
input alphabet, etc. One can write the instructions that
describe an augmented algorithm on a finite amount of
paper.) It is intuitively clear that the transformation

from T to Hy is recursive.

Given T and x as above, let My y be the augmented
Turing machine which, on any input string w, ignores w and
simulates the action of Hy on x. Machine T accepts se-
quence x if and only if Mp y acoepts any (i.e., all)
input sequences. Thus, if the emptiness problem for augmen-
ted Turing machines iS decidable, we can also effectively
decide, for any finite Turing machine T and any finite Se-
quence x, whether T accepts X, Since this IS known to be

impossible, wg have proved the theorem. 0O

Thus Rabin's clause (1), given above, does not hold when

modified to apply to infinite Turing machines. In fact, the
opposite holds:

(1)' For the class of. augmented Turing machines, the

emptiness problem is undecidable.

Having modified Rabin's clause (1) in sucn a mdnner, oOne
would suspect that we can modify his clause (2) to prove
that a particular theory 1S undecidable. Let K be a theory
(perhaps a second-order theory). In order to use Rabin's
technique to prove that K i1s undecidable, we need 'to prove

the following "reversed" version of Rabin's clause (2):

(2)* For every augmented Turing machine, H, there iIs a
formula, F, of K such that F is true iff there is an

input sequence which is accepted by H.

The difficulty in using this information arises in finding
the theory K, Rabin makes infinite tree automata correspond
to the theory S2S by demonstrating that acceptance of a tree
by an automaton is definable in S25. The set, over which we
quantify in the second order theory 823, corresponds to a
set of nodes on the infinite tree. This is the set of nodes
that the automaton may visit while being in a particular
state. (By "may Visit" we mean the following: Automaton A

may visit node n in state q iff, during a run of A in which

A accepts the tree, A is in state g when it visits node n.)

An automaton visits each node of its input tree only once.
However, an augmented Turing machine may visit each of its
input tape squares more than once. The definition of accep-
tance by an augmented Turing machine is thus more compli-
cated. This is where Rabin's methods fail to help us find

the appropriate theory K,

Recently Bavel C63 has attempted to expand automata
theory to include machines with infinitely many states.
Bavel's machine differs from an augmented Turing machine
(and from Muller's infinite sequential machine) in several
ways, the most important of which is that Bavel's machine
does not accept infinite sequences. Bavel's machine accepts
only finite sequences, so the definition of acceptance 1Is
the usual one. (I.e., there 1S a set of accepting states,
and a machine must land in one of these states.) Since
there are infinitely many states, the machine can remember
an indefinitely large amount of information. The states
perform the same role as the infinite tape of a finite
Turing machine. Bavel's most powerful machine is, in fact,

equivalent in power to a finite Turing machine.

In this paper we attempt to capture the full notion of
"domputation on an infinite sequence", so we extend the
Turing machine model rather than the finite automaton mode;.

Similar attempts to define computation on infinite sequences

)

have arisen as extensions of the theory of recursive func-

tions. In Rogers “71 and Kleene E81 we see the extension of
recursive function theory to include recursive functionals.
An augmented Turing machine is a device whose input and out-
put may both be infinite sequences of integers, An infinite
sequence of integers is a function. Thus an augmented
Turing machine is a functional (a mapping from functions to
functions). In [7] the theory of recursive functions is
extended to funetionals with the help of oracles. In C81
the theory 1S extended by defining additional schema, Using
either method, the functionals which are considered to be
"computable" are all "continuous". I.e., IN connection with
either definition is a theorem of the following sort: Let F
be a computable functional, Then for every function, f,

there is a nen-negative integer, n, such that
(Y @)V men) (£Cm) = g(m)) => F(f) = F(g)l.

Thus the value of F on f depends only on some finite part of
f. (In Rogers, continuity is proved in Corollary XXI on
Page 353. The proof is given in terms of the Baire topo-
logy, but it is a straightforward consequence of Rogers’
definition of "functional®. The definition states that, in
order to produce a value, functional F can consult the
oracle for function f only finitely many times.) This con-
tinuity property does not hold for functionals defined by

”augmented Turing machines, as we have shown jn Example 2.

2. The Limit of a Sequence of Rational Numbers

2.1 Definition of the problem

Keeping in mind our definition of an infinite Turing
machine, we will now examine an interesting concrete
example. The example will give us some sense of the power
of an infinite machine. The worst case running time for
this machine will be w2. So the example will force us to
pose the question: Can the same problem be solved by an in-
finite machine whose worst case running time isS «? At the
end of Section 3 we will show that such a machine does not
exist. Thus, we will have a counterexample to dispute the
hypothesis that "any computation that can be done in w(n+1)

time can be done in wn time".

The problem that we have chosen to solve uith an infi-
nite machine is taken :Prompure and applied mathematics. It

lends itself very naturally to solution by an infinite com-

putation.

Problem 1. Given an infinite sequence, s, of rational num-
bers, determine whether s converges, and if it does,

find the real number to which it converges.

Notice that no assumptions have been made about the re-

gularity of the infinite sequence s, or the regularity of

J

)

35

the decimal expansion of the real number to which s conver-
ges. No observable patterns are assumed to occur in either
of these sequences. Thus we do not assume the existence of
a finite description of sequence s or of its real-number
limit. In contrast to this, several authors have attempted
to define the notion of a recursive real number. The work
in this field includes papers by Rice [9], Mostowski [101],
Lachlan {11] and others. Rice describes a recursive real
number intuitively as "one for which we can effectively ge-
nerate as long a decimal expansion as we wish". First
choose a recursive function from integers to pairs of inte-
gers, so as to obtain a recursive indexing of the rational

numbers. A sequence of rationals is recursively enumerable

if its corresponding sequence of integers is <g(0), g(1),
g(2), ...> for some recursive function g, An r.e. sequence

<a(0), a(1), a..> of rational numbers iS recursively conver-

gent if there is a recursive function, h, to decide, for
each n, how far along on the sequence we must look in order

to be assured that

ja(i) - a(j)|<1/n.

Rice proves the following: There is no finite Turing ma-
chine to determine whether the limit of a recursively enu-

merable, recursively convergent sequence of rational numbers

.is equal to zero. V¢ will see in this section that there is
)

an infinite Turing machine to solve this problem for arbi-

36

trary sequences of rationals, using the conventional analy=-
tic definition of convergence. W will see in Section 3

that the problem cannot be solved by an augmented Turing

machine.

2.2 Solution of the problem - intuitive..explanation

To simplify the notation we assume that all rationals
and reals lie in the cltosed interval [0,1]. Any number
in that interval has a decimal expansion in which the
most significant digit is to the right of the decimal point.

None of the conceptual flavor of the example is lost in

| making this assumption.

W will construct an infinite algorithm to solve Prob-

lem 1., The algorithm will be called "Program PROBLEM1",

The "top-down'" plan of Program PROBLEM1 is as follows:

(a) The input to Program PROBLEMI is an infinite se-

quence {x3/y;}y_, of rational numbers, Each rational number

xi/y; will be given as a pair <x;,y;”> of non-negative inte-

gers, with yj>x420. These integers can be encoded on an

input tape using their conventional decimal (base 10) repre=

sentations. They appear on the tape in the following order:

) ‘ x1’y11x2,YZ’x3’y3’oto etc.

A "comma" symbol acts as separator between two integers,

(b) Let a finite string of symbols be called a finite

decimal expansion if its leftmost symbol is a decimal

point, and all of its other symbols are decimal digits

(0 through 9). Each finite decimal expansion represents a
rational number. When We write that *q id a finite decimal
expansion™ we will often refer also to "the rational number
q". VW assume that the set of finite decimal expansions is
linearly ordered by a recursive indexing (e.g., lexicogra-
phical ordering). Thus, for each positive integer i, we can

refer to the i®h finite decimal expansion.

(¢) Here's how Program PROBLEM1 works: Let i be a posi-
tive integer. At step i in the computation, find rqy,ro, ...
ri, the i most significant digits in the decimal expansion
of x3/y;. Write these digits on the output tape. Also, for
each j between 1 and i, compute the difference between the
decimal number O.rqrp...r; and the j®h finite decimal expan-
sion qj. Call this difference diff;. Write these dif-
ferences on the output tape. Thus at each step, i, the al-
gorithm writes new values of digits rq, «se,ry, printing them
Over the old values. The algorithm also writes new values
for the decimal differences diffq,...,diffy, printing thenm

over the values calculated in the previous step.

Consider the digit rq. It IS possible that, at some
step in the computation, rq takes om a certain digit value,
Ry, and never changes again. In this case, the value of r,
at time w is the digit Rqy. If this happens with each of

the digits rq,rpo,..., then at time » we have an infinite
decimal expansion 0.RqRp... to which {xi/yi}$=1 converges.
V¢ might oonclude that our algorithm had taken only « steps
to complete its mission. But there §S one very important
detail remaining: beginning at time w the algorithm must
check each digit rq,rp,r3,... to verify that the value of
each did indeed settle, It can take another w steps to do

this checking.

If, for some positive integer i, ry did not settle, then
it will only take finitely many steps to discover this. A
good example of this occurs when {xi/yi}?zl converges to

0.55 by oscillating around 1t:

x1/yq = 0.550111,.. (infinitely many 1's)
X2/y> = 0.549888... (infinitely many 8's)
X3/Y3 = 0015500110 e

Xq/y“ - 0.5“9988...

etc.

T

At time w, there is a "blur" in the square for rp. The al-
gorithm finds this "blur" very quickly, i.e., only finitely
many steps after time w. We will give the algorithm all the
technical equipment it needs to deduce that, in this case,
{xi/yi}(;‘,_=1 may converge to 0.55., W emphési'ze the word
"may" because the "blur™ in place of r, is not conclusive
evidence that the sequence does or does not converge to
0.55. Me will see in the formal treatment that the algo-
rithm can determine that the digit rp oscillated between 4
and 5. After making this determination, the algorithm will
have to verify that {xi/yi}]_, converges, by finding the
value of j such that 0.55 1is the i finite decimal expan-

sion, and checking that diffj is equal to zero.

The difficulty which remains is that diffj now has infi-
nitely many digits, since the algorithm computed i1 digits of
diffj at each step i. So checking diffj for equality to

zero means checking the infinite number of digits in diffj.

(d) Program PROBLEM? will be presented rigorously as a
dovetailed combination of a subprogram called Procedure
INFINITE, and several copies of another subprogram called
Function FINITE, Each of these subprograms has two main
loops. The first loop takes @ time, and the second loop
takes up to w time, 1In each case, the first loop creates an

infinite sequence Of ;symbols, and the second loop checks

that infinite sequence for occurrences of the "blur" symbol,

Function FINITE answers "true" oOr "false" to whether
| |

{xi/y4} 31 CONverges to g, a particular finite decimal ex-

pansion., Procedure INFINITE tries to create an infinite

W

decimal expansion to which {xi/yi}i=1

may converge.

The intuitive ideas behind the subprograms FINITE and

INFINITE are now given in more detail:

(e) The input to Fumction FINITE is an infinite sequence
txi/Yi}:=1 of rational numbers, and a number, g, with a fi-
nite decimal expansion. The output of the algorithm §S the

value "true" if {x3/y;} converges to g, and "false"

W
i=1
otherwise,

Let i be a positive integer. At step 1 in the computa-
tion, Function FINITE finds the i1 most significant digits of
the difference between'xi/yi and q. If the function is exe-
cuted by an infinite Turing machine, the most significant
digit of this difference can always be written on the left-
most square of the machine's output tape, Likewise, the kth
most significant digit of the difference can always be writ-
ten on the k®h square of the tape. |If {xi/Yi}?=1 converges
to q, the differences thus computed will get smaller and
smaller as i becomes :Large. It is intuitively sensible then
that each digit on the output tape will settle into being

zero, This, sensible claim will be made rigorous by Lemma

I

2.1, Thus, at step w + 1 in the execution of Function

FINITE, the function checks to see if the ith square on its
output tape contains a zero. If the function ever finds a

non-zero symbol, it concludes that {xi/yi}g=1 does not con-
verge to q. Otherwise it concludes, after checking each of

the w-many digits, that {x3/y;}{_| does converge to q.

(f) The input to Procedure INFINITE is an infinite se-

quence, {x3/yj}; ,, of rational numbers. The output of

Procedure INFINITE is in two parts. The first part Is an
infinite sequence of symbols (which we will call rq,rp,
r3,...), each of which 1s either a decimal digit-or the
"blur® symbol. The second part is the smallest value of k

such that rj = "blur" (if such a value exists).

Procedure INFINITE will attempt to record a succession
of better and better approximations (i.e., more and more
digits) for the limit; of {xi/yi}2=1, assuming that this li-
mit has an infinite decimal expansion. Beginning at time w,
Procedure INFINITE will scan the infinite expansion that it
has created, checking to see if any of its symbols turned
out to be "blur". If not, then the program takes this infi-
nite decimal expansion to be the limit of {x3/y;}]_ ;. If
Procedure INFINITE finds a "blur", and if it IS determined
that the "blur" represents oscillation between two consecu-
tive digits (say 4 and 5), then Program PROBLEM1 consults

the output .of an appropriate run of Function FINITE-

il

42
) W give a few examples to illustrate how Procedure
INFINITE works:
Example 1. Let xq, y1, X2, Y2, X3, ... be given as input
to Procedure INFINITII. Assume that the decimal expansions

of x1/y1, Xp/yp, +.. are .

X1/yq = 0.5555... (infinitely many 5's)
Xo/yp = 0.1555...
x3/y3 = 0.1155...

and so on, The procedure begins by writing the following

on its output tape:

5 blank blank blank con

square 1 square 2 square 3 square 4 ...

This represents the fact that 5 Is the most significant

digit in the decimal expansion of xq/y3. Then procedure
INFINITE writes

1 5 blank blank ... i

square 1 square 2 square 3 square 4 ...

43

This represents the two most significant digits in the

decimal expansion of x5/y,. Next, the procedure writes

1 1 5 blank -

square 1 square 2 square 3 square 4

And so on. By referring to the definition of the output of
an augmented Turing machine, We see the output of Procedure

INFINITE at time « will be

1 1 1 1 : [I |

square 1 square 2 square 3 square 4 ..,

From time » on, the procedure will check each symbol on the

output tape to make sure that none of the squares contains
the "blur" symbol. This checking can take « time, so Pro-
cedure INFINITE has worst case running time w2. Notice

how the content of the output tape corresponds to the limit

of the sequence {x3/y4};,,, which is 0.1111... .

Example 2. Let

x1/yq = 0.1U4888... (infinitely many 8's)
X2/y2 = 0.15000... (infinitely many 0's)
) X3/Y3 = 0.1”’988-0.

xy/ Yy

0-15000. . o

ik
HN
(RS

x5/y5

-0.14998...

and so on. Procedure INFINITE begins by writing the fol-

lowing on its output tape:

1

square 1.

blank

square 2

Then 1t writes

square 1

Then

1

square 1

Then

1

square

square 2

4

square 2

square 2

blank

square 3

blank

square 3

9

square 3

0

square 3

blank

square 4

blank

square 4

blank

square 4

0

square 4

blank

square 5

blank

square 5

blank

square 5

blank

square 5

L]

*

.

.

Then

1 4 9 9 8

square 1 square 2 square 3 square 4 square 5 ...

And so on. Again by referring to the definition of the
output of an augmented Turing machine, we see that the out-

put of Procedure INFINITE at time « will be

1 "plur® whlurm "hlure "blur®

LR BN}

square 1 square 2 square 3 square 4 square 5 ...

At time w, the Procedure checks symbols on this output tape
until 1t finds the "blur"™ symbol in square 2. It records
this number 2., In the rigorous definition of Procedure
INFINITE, we will denote this number by the letter »k»,
Notice that the output tape of the procedure contains the
string <1, “blur", "blur", ...> but the sequence {x3/y;}7_,
converges to 0.15. Procedure INFINITE uses a trick with
even and odd digits to determine that the content of the kbh
square has been oscillating between 4 and 5. In this way
INFINITE obtains the digit "5" in 0.15. In the proof of the
correctness of Procedure INFINITE it will be shown that the
trick always produces the decimal expansion to which
{xi/y3}{ 4 is "most likely" to converge. I.e., Procedure
INFINITE returns the finite decimal expansion 0.15, along

with the claim that if {xi/yi};_1 converges, then it conver-

46

ges to 0.15., so {xi/Yi}?-1 either converges to 0.15, or it
does not converge. The convergence of {x;/y;}§_, is then

tested by examining the output of that particular run of
Function FINITE whose input is [xilyi}:_1 along with the

finite decimal expansion 0.15, For the sequence given in

this example, Function FINITE returns the value "true", in-
- dicating that {x3/y;}&_. converges to 0.15.

Example 3. Let

xq/yq = O.14444, ., (infinitely many 4's)

xp/yp = 0.15555... (infinitely many 5'3)
X3/y3 = 0;1444“...
xy/yy = 0.15555.,.
x5/yg = 0.14444, .,

and so on. As in Example 2, the output tape of Procedure
INFINITE will contain <1,"blur","blur",...> at time o,
Furthermore, Procedure INFINITE will note that the con-

tent of square 2 oscillated between 4 and 5. So, just as it
did in Example 2, Procedure INFINITE will return the finite
decimal expansion 0.15, with the implicit claim that if

{xi/yj}J_, converges, then it converges to 0.15. But unlike

Il

a7

the sequence of Example 2, the sequence of this example does

not converge. This demonstrates the need for the part of
the algorithm which checks the convergence of {xllyl} =1 to

0.15 by examining the cutput of the appropriate run of
Function FINITE.

2.3 Solution of the problem = technical details

W may now procede with some of the technical details.

Given real number,, r, and positive integer, i, let
ith_gigit(r) be the i*® digit in the decimal expansion of r.
Thus

ro= 18t.digit(r)-10-1 + 2M_digit(r)+10-2 +

Me use the notation trunecation;(r) to denote

150 digit(r) 10~ Vs, . +ithodigit(r)-10-1,

Let {xi}§=1, {Yi}$=1 be sequences of integers. Since we

want to compute the rational xj/y; in [0,1], we insist that
Osxy<yy, for all i. W would like a machine whose input

tape has the infinite sequence

48

x1’ Y1’ x21 y2’ x3’ Y3, “c oo

and whose output tape has either (1) the symbol
"does~-not~converge", Or (2) the symbol "converges"

and the decimal expansion of the number r, where

r = lim x3/y4.
' i-w

Note that, for every positive integer i,
truncationj(x3/y;) represents the i most significant

digits of the i member of the sequence {x3/y5}y ;-

Function FINITE is the algorithm which determines if the
sequence {xi/yi}f=1 of rationals converges to g, a number
with a finite decimal expansion. In the algorithm, a vari-
able called diff is assigned a new value each time through
a "For" loop. After w iterations of the loop, we want to be
able to identify an outcome (possibly "blur") for each indi-
vidual digit in the decimal expansion of diff. Thus, for
each positive integer k, we must write k*fodigit(diff) in
the same place (an the same square of the output tape) each

time through the loop. We can now present Function FINITE.

var {xi}{;1, {yi};;1: sequences of integers
Function FINITE (g : finite decimal expansion) : boolean;

var diff: infinite decimal expansion {= real number}

I

49

i,k - integer

For i:=1 toward

ql
Let FINITE:= true {a tentative conclusion =

let diff:= |truncationj(xi/yy)

that {xi/yi};’=1 converges to q}
For k:= 1 toward o
if ktPhodigit(diff) = 0 then let FINITE:= false

exit from FIl ITE
exit from FINITE

The execution of Function FINITE has two distinct loops.
Each iteration of the first loop computes a new'value for

diff, writing 1t over the previous value for diff. This

value diff represents the difference between x3/y;4 and g

(truncated to i digits). If we narrow our attention to the
square on the output tape where the most significant digit
of diff is being written, we see a new value on that square
for each iteration of the loop. |If we knew for a fact that
{xi/yi}';ﬂ converged to g, we woild expect the symbol in

that square to eventually settle into being zero, and never

change again. Stated more precisely, we would expect that

lim 18%.gigit(diff) = 0

i-H.u

or

-1im 15t_digit(|truncationy(x3/yy - @)) =0 .
iow ‘

LA

Y

50

This expectation is given more generally in the statement of
Lemma 2.1. The lemma states that if {xi/yi}q=1 converges to
q, then each digit of ltruncationy(xy/yy) =~ al will settle

into being zero.

Lemma 2.1, Let q be a number with a finite decimal expan-

sion. Let lim x4/y; = 9. Then for each positive integer Kk,
1w

1im k*P_qigit(|truncationj(xi/y;) - ql) = 0.
1w

Proof. Assume the contrary = that there is an integer, Kk,

such that 1im x®P-digit(|truncationj(x3/y{) = al) = 0. For
10

any positive integer i, truncationj(xy/y3) - q is the
difference of two finite decimal expansions, so
k®P_ogigit(|truncationi(xi/ys) - ql) is a decimal digit.

Thus the claim that kth-digit(Itruncationi(xi/yi) - gl) does

not converge to 0, for some particular positive integer Kk,

can be written rigorously as
(\/10)(31>ig)[kth—digit(itruncationi(xilyi) - ql)z1l.
'But.kth-digit(|truncationi(xi/yi) - gql)21 implies that

-K
|truncationi(x3/yy) - qlz210 —,

51 S

Eventually i 1s greater than the largest power of 10 in the
decimal expansion for q, at which point one obtains the same
result by either truncating x;/y; and subtracting q, or by
subtracting q from x;/y; and then truncating. Stated for-

mally, for sufficiently large i we have

| truncationgy(xi/y;) =~ ql | truncation; (x5/y; - a)l

ft

truncationj (Ixy/y; - ql) .

Thus truncationi(|x;/yy = q) z10’k. Since {x3/yy ~ al is

non-negative,

Ix3/y; - al 2 truncation;(lxi/y; - ql), so

Ixi/y; - al = 107K,

Summarizing, we have found an integer, k, satisfying
(Vig)(Jisig)lix3/y; - al2107K],

This contradicts the assumption that 1im x3/y; = q. O
i+w

Proposition 2.1. Function FINITE is correct; i.e., for an

infinite sequence {xi/yi}?_1 and finite decimal expansion q,

- - - w
the value of FINITE(g) is “true* if and only if {Xi/yi}i=1

S

52

converges to q.

Proof. f {Xi/yi}?=1 converges to g, then, by Lemma 2.1,
the limit (as i goes to w) of kth-digit(ltruncationi(xi/yi)
- ql) is 0, for every positive integer k. Thus, for any
positive integer k, after some finite number of iterations
of the "For i" loop of Function FINITE, the value of
k®P_digit(|truncationi(x;/y;) - ql) settles into being 0.
Thus, at time w, k®P.digit(diff) is equal to 0. Notice that
the second loop of Function FINITE simply checks each digit
of diff, If it finds all digits to be O, it reports "true".
Thus, if {xi/yi}§=1 converges to g, the value of Function
FINITE(q) IS "true",

Conversely, if Function FINITE reports "true" it is
easily seen that (each digit of) diff approaches zero as 1

approaches w. Therefore, {xi/yi}?=1 converges to g- O

The worst case running time for Function FINITE is

clearly w2. The action of the function takes place in two
Parts. The first part creates an infinite sequence of di-

gits; the second part checks to see if each of the digits in

that sequence is zero. W will see in Section 3 that it is

impossible to shorten the overall worst case running time of

) the algorithms given in this section. W will prove that, I

in order to solve Problem 1, a machine must solve a simpler

problem, and this simpler problem cannot always be solved in f‘f
w time. Thus the two parts of Function FINITE cannot be
combined into one loop. There IS no algorithm which, in one
w-time step, computes the infinite sequence of digits which

we call diff and reports how many of these digits are zero.

The intuitive idea behind the next algorithm, Procedure
INFINITE, has already been discussed. W now give the
algorithm in complete detail.
var {xi}?=1, {yi}?=1: sequences of integers

{ry}, 4% sequence of digits

k: integer

comment: an element of the set

{"converges" ,"does-not=converge" ,*don't-know"}
Procedure INFINITE

var i ,k: integer

{ex}{_4: sequence of digits

{Ok}?=1: sequence of symbols, each of which

Is either a digit or the symbol "not-defined"

“For 1:=1 toward «
For ki= 1 to i
Let ryi= kP gigit(xy/yy)

Let eypt= the largest even digitsry

I

54
If rpy # 0 then let op:= the largest Odd digitsr)
else let op:i= "not-defined"
Let comment: = "converges" {a tentative conclusion}
For k= | toward w
if rg="blur®
then cases
eg#"blur": Let rpiz ep+1
Let comment: = "don*t-know"
ogz"blur": Let rf:= of+1 {to see why rf is
a digit, see ease 4.2 of Pro-
position 2.2 below}
Let comment:= "don't-know"
else : Let comment:= "does-not~-converge"

exit from INFINITE
exit from INFINITE

Upon each iteration of the "For i" loop, Procedure
INFINITE records the value of truncation;(x;/y;), the i most
significant digits of xy/y;. In the simplest case,

{xi/yi};=1 converges to a real number, and, at the end of

the initial loop, ry is a digit for eaah value of k. For
instance, if {x3/y;}]_4 converges to 0.1, then rg might be 1
for k = 1, and © otherwise. However, the decimal expansions

xy/yy can also converge to 0.1 by oscillating around it as

in the following example:

. xq/y4 = 011111, (infinitely many 1's)

55

X2/yp = 0,08888.., (infinitely many 8's)
x3/y3 = 0.10111...,
xy/yy = 0.09888...
x5/y5 = 0.10011...
xg/yg = 0.09988...
x7/y7 = 0.10001...

In this-case, {xi/yi}g=1 converges to 0.1, but at the end of
the first ¢ steps of Procedure INFINITE, ry is "blur" for
all k, To account for this phenomenon we have Procedure
INFINITE keep track not only of ry, but also of e, and

og. In the example above, r4 jumps between 0 and 1 in suc-
cessive iterations of the "For i" loop. But el, the
largest even digitsry, IS always 0. Thus, at time e,
Procedure INFINITE observes that rq Is "blur", so it

examines e4 and finds the digit 0. It then sets rq:= 1

and reports the comment "don't-know". The main algorithm,
(Program PROBLEM1 given below) will interpret this informa-
tion a5 a request to examine the output; of Function

FINITE with input g = 0.1,

Modifying the example slightly, we get

56 i
) x1/yq = 0.21111... (infinitely many 1's)
xp/yp = 0.18888... (infinitely many 8's)
x3/y3 = 0.20111...
xy/yy = 0.19888...
x5/y5 = 0.,20011...
xg/¥g = 0.19988...
x7/y7 = 0.20001...
. In this new example, {x3/y3}§., converges to 0.2, Once
~ again rq is "blur" after w iterations of the "For 1" loop.
But since eq oscillates between 0 and 2 during the course
of the looping, eq is also "blur™ at the end of the loop
However o4 is 1 at the end of the loop and Procedure
INFINITE sets rq:=2 and proceeds as before.
If ri is zero, then there 1S no largest odd digitsry,
thus the use of the new symbol "not-defined". The role of o
this value in the test for convergence will be examined In
detail later.
We must remember that, although each of these examples
) has an input sequence that follows a nice "recursive" pat-

tern, no such pattern is assumed in general. Our input se-

57

quences may be quite disorderly. It is important to note
this so that we do not make the mistake of thinking that our

algorithms can take shortcuts by observing patterns in the

sequences.

If we decide to generalize our problem so that all real
numbers may be represented (not only real numbers in the
interval £0,1]) then at time w, Procedure INFINITE will have
to know the position of the most significant digit of r that
needs to be examined. ~Eaech time through the "For i" loop,
the position of the most significant digit of r should be
encoded -on a place reserved for that purpose on the output
tape. If, at time w, the value encoded in that place has
not settled (i.e., has "blur" symbols) then the sequence

{x3/y3};_, does not converge,

1
Notice that the second infinite loop "For k" could have
been avoided if we had been able to produce, by time w, a
variable whose value is the smallest k such that r, =
"blur®, This task i1s equivalent to the one we encountered
in trying to speed up Function FINITE. As we noted earlier,
and will prove in Section 3, the speed up is impossible to

achieve.

The main program (Program PROBLEM1) combines Function
FINITE and Procedure INFINITE by dovetailing.

'

‘ 58

We now formalize the main program, Program PROBLEM1. ¢, 3

the program, we assume that the set of finite decimal expan=-

sions is linearly ordered by a recursive indexing (e.g.,
lexicographical ordering) «

var {xi};’ﬁ, {ys}g.,: sequences of integgrs
k: integer

EAHE g1
ry p.q- Sequence of digits

comment: an element of the set

{"converges" ,"does-not-converge" ,don't-know"}

Program PROBLEWM?1

var qq,qp,+ sz finite decimal expansions

01,02’090: bOOIean
J- integer

Dovetail

{Call Procedure INFINITE1

[Compute g4, the first finite decimal expansion

Let Cqi= FINITE(Q1)]

[Compute qo, the second finite decimal expansion

Let ept= FINITE(Qz)]

59

End-dovetail
If comment= "don't-know"
then find the integer j such that qj = truncationg(r)
{Note: qj is the J*0 finite decimal expansion;
the integer k, and the 18% through gth
digits of r were computed by Procedure
INFINITEI
if cj="true" then let comment:= "“converges"
else let comment: = "does-not-converge"

exit from PROBLEM1

After the execution of Program PROBLEM1 the output tape

has either the symbol "does-not-converge" or has the symbol

"converges" and a real number, r, to which {x3/y;} con~

w
i=1
verges. (The digits of r are actually written on the output
tape by Procedure INFINITE,) More precisely, {ri};’_1 IS

an infinite sequence of symbols, each of which is either a
digit or "piur", The program also creates a value k, which
is either an integer or an infinite sequence of "blur" sym-

bols. (The variable k¥ is an infinite sequence of "blur"

symbols if there were w-many steps executed in the "For k"

loop in the second half of Procedure 'INFINITE.)

60

Proposition 2.2. Program PROBLEM1 IS correct, in that

(1) At the end of Program PROBLEM1, the value of the
comment variable is either "converges" or "does-

not-converge',

(2) If, at the end of Program PROBLEM1, the value of the
comment variable is "converges® and the variable §
contains all "blur® symbols, then {x1/y;}¥§_. converges

to the infinite decimal expansion r,

(3) If, at the end of Program PRLOBLEMW, the value of the
comment variable is "converges" and the variable §
contains an integer, then {xilyi}‘;:1 converges to the
finite decimal expansion O.rqrp...ri [which equals

truncationp(r)], and

(4) 1f, at the end of Program PROBLEM1, the value of the

comment variable is "does-not-converge", then

{Xi/'yi}“{:1 does not converge.

Proof. The proof of correctness iIs straightforward. An out-

line of parts (2) through (4) is as follows:

(2) Examining the “For k" loop in the second half of Proce-
dure INFINITE, we see that the condition stated in (2) above

can only happen if, for every positive integer, k, rg 1s not

equal to "blur", (Otherwise, the "For k" loop would be |

exited prematurely, leaving k to be an integer.) The "For

i" loop of Procedure INFINITE defined each ry to be a digit.

W must sh that {x;/y;1}§
ow {x1/y4 f=1 converges to the real number r,

whose decimal expansion is:the infinite sequence O.rqrprs...
of digits, To sea this, let e be 10'k for some positive
integer k. Since rqy...,ry, are not "blu;ﬁ at time w, we
know that there is a positive integer ig such that, for all
izig, jth-—digit(xi/yi) =Ty for all j = 1,...,k. Thus, for
izig, 1X4/yy ~ ri<e. SO {xi/yi};=1 does indeed converge

to r.

(3) If the condition given in (3) holds, then Procedure

INFINITE returned the inconclusive comment "don't-know" and

Program PROBLEM1 changed the comment to "converges" after

consulting the run of Function FINITE whose input was

izt {yi}?=1 and truncationg(r). By Proposition 2.1,

the result of Function FINITE is correct,

(4) If the condition given in (4) holds, then either Proce-
dure INFINITE returned the comment 'dees-not-converge® =
Procedure INFINITE returned the comment "don't-know" and
Program PROBLEM1 changed the comment to "dees-not-converge"
after consulting the run of Function FINITE whose input was
{xg}7.4 {yil{_ 4 and truncationg(r). In either case, the

) "For K" loop in the second half of Procedure INFINITE was

exited prematurely, after having found k tO be the smallest

positive integer such that ri = "blur®, W divide into
cases, according to the action of this iteration of the
loop.

Case 4.1, The value of ey is not "blur".

For concreteness assume that ef iIs 4. Then there is an

integer, ig, such that
(1) jth-digit(xi/yi)-z ry for all j=1,0e.,k=1, and
(2) k*P_gigit(xj/y4) is 4 or 5

for all izig.

Also, for .each izip, there are integers iy,ig2i such that
ﬁth-digit(xiu/yiu) = 4 and Eth—digit(xiS/Y15) = 5,

The value assighed to truncationf(r) by the "For k" loop in

the second half of Procedure INFINITE was O.rqro.e.ryp_q5.

The existence of the "iy" integers indicates that if
{xi/yi}?=1 converges, It aonverges to a number s
truncationg(r). On the other hand, the existence of the
"ig" integers indicates that this convergence must be to a
number ztruncationg(r). Thus, the only number to which
{xi/yi}?=1 could possibly converge is truncationg(r). But
upon exit from Procedure INFINITE, the Program PROBLEM?1

consulted .the run of Function FINITE whose input was

63 %

truncationg(r). The function reported "false" on the con-

vergence question, and, by Proposition 2.1, the function was.

correct.

Case 4.2, The value of ef; is "blur" but the value of of is
not "blur"™. Then oy is a digit, for if of settled into

being the "not~-defined" symbol, then ri would have settled
into being zero, contradicting the fact that ry is "blur".

Case 4.2 is.then similar to Case 4.,1.

Case 4.3. ' The value of e is "blur" and value of of 1S
“plur®., Then, in the "For i" loop of Procedure INFINITE,
as i went to infinity, the k*h digit of x;/y; oscillated

) among digits that were more than one unit apart. It is then

a straightforward matter to show that {x3/yj}{_; does not
converge. [

Each of the w compound statements enclosed within
"dovetail...end-dovetail" takes at most w2 time. Thus the

"dovetail...end-dovetail® portion of the program takes at

most w2 time, The remainder of the program takes finite

time. So the worst case running time for Program PROBLEM?

is w2. At the end of Section 3, we will show that no ma=-

chine that solves Problem 1 has worst case running time w.

The output .of Program PROBLEM? will sometimes be infi-

nite, This is necessary by virtue of the nature of Problem
1, since the answer to the problem can be an infinite deci-

mal expansion.

65

3. The Limit of a Sequence of Positive Integers

3.1 Definition of the problent

On page 52, and again on page 57, we made reference to a

problem which is embedded in Problem 1. "We now state that

problem explicitly:

Definition. Let s = {si};’zl be an infinite sequence of posi-
tive integers, If n is a positive integer, we say that the

rrmeit-pf-s5—¥Fs5-R7 Tf

(3‘10)(Vi>10)[51 = n].

W express this symbolioally as

I_|m sy =N
1-+w

W say that +he—tmi+t

£
T

e - s .. R
of—s—ts—nfmrty 1T

o) (3. (Yi>i)Iss>nl.

Problem 2. Given an infinite sequence, s, of positive

integers, determine whether or not the Ilimit of s iIs

infinity.

66

As we hinted on pages 52 and 57, the existence of a "fast"
machine (with worst case running time) to solve Problem 2

would imply the existence of a fast machine to solve

Problem 1.

Recall that the solution to Problem 1 was, under cer-
tain conditions, an output of infinite Si._ze, In contrast,
Problem 2 clearly requires a finite-size answer (such as
"yes" Or "no"). In reality, what constitutes an "answer"
to a problem must always be determined by the nature of the
entity that reads the answer. Consider, for instance, two
ways to represent the number Zero: (1) Zero can be repre-
sented as an infinite decimal expansion, each digit of which
Is the symbol "0, If x; = 0, for every positive integer i,
then Program PROBLEM1 represents that {xi/yi}i‘*’___1 converges
to zero by printing out this infinite-decimal-expansionver-
sion of zero. Any entity reading the output of Program
PROBLEM? must be prepared to read an infinite decimal expan-
sion. (2) The other way to represent zero is with a finite
symbol of some sort. Function FINITE does this by printing
out "true" (since FINITE = “true" means that {xi/yi}"j

i=1
converges to zero). This finite representation iS necessar

- 4

because the entity which reads the information needs to read

it in finite form. The reading entity is Program PROBLEM?.

This procedure depends on Function FINITE to provide a con-
} cise answer to the convergence question for {xi/yi}?ﬂ and

each value. of q.

67

Let s be an infinite sequence of positive integers.

call S an 3-sequence if at least one integer occurs infi-

nitely many times in s. Otherwise s is a -3-sequence.
Lemma 3.1. Let s be an infinite sequence of positive inte-
gers. Then s is a -3-sequenceiff the limit of s IS infi-
nity.

Proof. A simple pidgeonholing argument. 0O

Thus Problem 2 has an equivalent 'formulation which can

be stated as follows:

Problem 2. Given an infinite sequence, s, of positive

integers, determine whether s is an 3-sequence or a

~t=s5equence.

We now define an infinite Turing machine T4,T5

to solve Problem 2: The first machine, T4, is very much
like the Tq-machine of Example 2 in Section 1.1. For each
positive integer, i, machine T4 keeps track, on
tape-outT1(1i), of the number (mod 2) of occurrences of i in
S. At time v, machine To writes "~3-sequence” on square 1

of its output tape. Then To proceeds to examine each square
} of tape-out 1, starting with the leftmost square. Machine

To prints .nothing unless it reads a "blur" symbol on

68

tape—outT1, in which case it replaces the symbol "~3=

sequence" on its output tape with the symbol "3-sequence",

and halts.

If S is an 3-sequence, the running time of the infinite
machine T4,T, is w. Otherwise the time required to perform
the computation is ¢2. Our goal is to prove that this infi-
nite Turing machine is time optimal for Problem 2,'i.e.,
that no infinite Turing machine can solve the problem for
every sequence in less than w2 time. |In order to introduce
the main ideas used in reaching that goal, we first consider
a restricted form of the given problem, For the restricted

form of the problem, the desired result is easier to prove.

3.2 Proof of an easier result

Assume that we have an infinite machine Tq,T, that

solves the original problem, Problem 2, with worst case run-

ning time w. Then Ty never executes more than finitely many

steps. This being the case, To never examines more than

finitely many squares of the output tape of Ty. V€ want to o
show that, given any augmented Turing machine T (i.e., any

augmented algorithm), any finite portion of the output of Ty |
iS "ambiguous" with respect to Problem 2. The word

) "ambiguous" will be defined more carefully later. For now

let us simply state that no augmented algorithm, T4y, can .

69

successfully examine an infinite sequence, and, on a finite
section of 1ts output tape, correctly encode the information

"J-sequence™ OF "-3-sequence" about the input sequence.

This result is easy to prove if we make the restriction
that the answer to Problem 2 must be encoded on only one
square Of tape—outT1, say the leftmost square,
tape—outT‘(>1). -The argument for this simplified problem
contains the sequence splicing idea, which we will use later

for the original Problem 2. So we will first give an infor-

mal description of the argument for this simplified version

of Problem 2. In particular, we will, show that

(*) If T, is an augmented Turing machine, then there is an
infinite sequence, s, such that. at time «, the answer

"s IS an 3-sequence™ Or "s is a ~%-sequence" IS incor-
rectly coded on tape-outTt(1),

The simplified argument given below is meant to aid the

reader to understand the more complicated argument for the

original, un-restricted version of Problem 2. The more com~-

-
plicated argument will be given in Section 3.3. ‘

Assume, then, that we have an augmented Turing machine, :
TI, whose input is an infinite sequence of positive inte-)
) gers. Let X be the set of all symbols that may appear on

tape-outi1(1) at time ». Note that X is a subset of

Output-Alphabet™! uy {"blur"}. The set X is a disjoint union

of two sets, X3 and X~3. At time w, if we find an element

Of.Xa on tape-outT1(1), we conclude that the input sequence
was an 3-sequence. If we find and element of X _ we con-

clude that the input sequence was a -3-sequence. More
formally,

T1 (s)

X = {tape—ou%

(1)}s is an infinite sequence

of positive integers),

X_a = {tape-out§1(8)(1)[s IS a ~j~sequence}, and

T) ()

"X, = {tape-out
4 ©

(1)ls is an J-sequencel}.

W will divide the proof into cases, depending on which,

if either, of the sets X3 or X 3 contains the "blur" symbol.

First we define a few useful infinite sequences. Let

and, for each positive integer, i, let

i

it
/\
-
-
-
-
-
-
-
.
A4
-

The result of applying Tq¢ to s should give us an element of

X~3. This 1s also true for any sequence, s', that differs

71

from s only in its initial segment, since any such sequence
s' is also a ~3-sequence, (E.g., s' =<5, 5, 5, 5, 10, 11,
12, 13, ...> is a ~d-sequence.) The result of applying T,
to any tl-sequence should give us an element of X3. The
same is true for any sequence, ti', that differs from a

ti-sequence only in its initial segment.
Now we divide the proof of (¥) into three cases:
Case 1. Neither X3 nor X.3 contain the "blur" symbol.

Then "blur" cannot appear on tape—outT1(1) at time w.
IT Ty wants to tell us that the input; sequence is, say, an
d-sequence, it has to decide on this at some finite time by
settling in on a symbol in X3 and never changing i1ts mind
again. Likewise with a -3-sequence. W will compose a se-
quence, sg, which tricks T, into producing the "blur"* symbol

ontape—ouﬂ}(1), contrary to our assumptions.

We begin the construction of s3 with an initial segment

of s. How large an initial segment should we choose? Since
S Is a ~d-sequence, machine T4, upon examining s, must at
some finite time write an element of X.3 on tape—oufr1(1), -
and never change that symbol again, Since this happens at a
finite time in the computation, Ty could only have examined

a finite initial segment of s by that time. Let £1 be this

initial segment of s. Onto f1 we ooncatenate f2, a segment

72

of t1. How large a segment should we choose? VW should
choose f, large enough so that T4 changes its symbol in X_.g
to a symbol in X3. Once again, this has to be done at a
finite time in the computation, even though only an initial

segment of the sequence

f1t1 :<1’ 2’ 3, 4 LI] n,1 1’ 1, 1’ 'o.a>

has been examined by Tj.

Thus in examining f4f,, machine Tq will, among other
things, write an element of X.3 on tape-outT1(1) and later

} change that symbol to an element of Xg3.

Onto f1f, we concatenate f3, an initial segment of s.

Again, in preparation for the examination of the entire in-
finite sequence fqfys, Ty must, at some finite time during;
the examination of s, change the answer on its output tape

back to an element of X.3.

V¢ continue in this manner, forming sg by splicing to-
gether segments of J-sequences and ~d-sequences in an al- ,
ternating fashion. By doing this, we force T4 to change ; |
its mind infinitely often between symbols in X3 and X.3. o
Therefore, at time o, tape-outT1(1) contains the "blur" L i

symbol, This contradicts the Case 1 hypothesis. '

73

Case 2. The "blur" symbol is an element of X~3,
In order to indicate that the input sequence is a ~3-
sequence, Tq may, at some finite time, settle on a non-
"blur" element of X~3, or it may change its mind infinitely
often about the content of tape—outT1(1), producing a
"blur", In contrast, the elements of XH are all (ordinary)
elements of the output alphabet of Tq. We must create a

contradiction by finding an 3-sequence that forces Tq to

produce a "blur".

Notice that the sequence sy created for Case 1, was an
J-sequence. With one slight modification to the argument
We can use sequence SEl to contradict the hypothesis of Case
2. The modification is as follows: When we choose fp4,1, an
odd-numbered initial segment of s, we cannot argue as we did
in Case 1 that T4 will, upon examination of some initial
segment of f4fp...fpys, settle on an element of X.g. I
Case 2 machine T4 may never settle om an non-"blur" symbol
from X“E’ since the machine can indicate a -3-sequence by
changing its mind infinitely often, producing a "blur".
Instead we argue as follows: Assume that we have construc-
ted £4fo...f25. Since 2i is an even number, machine T1

will, upon examining f1fssasf2q, Write an element of X3 on

tape—outT1(1). We must choose a finite sequence f2i41 SO
that, while proceeding on to examine f2i+1, T4 changes the

content of tape—outT1(1) from that element of Xg to some

ether symbol. To do this, we consider again the infinite
sequence ffpo...f5;8. Since thig IS a ~3J-sequence, there

are two possibilities:

Case 2.1. with f4fp...fp4s on the input tape of T4, the
content of tape-outT1(1) at time w would be a non-"blur"

element of X

- g

Then, at some finite time during the examination of s,

machine T4y changes the content of 'cape-outT1(1) to a non-

"blur" element Of X”El' As in Case 1, T, has examined only a
finite initial segment of s by the time it changes

tape-outT1(1). VW choose fpj.q to be that initial segment.

Case 2.2. With f4f5 .s.fpys on the input tape of T4, the

content of tape—outT1(1) at time w would be a “blur".

Then, during the examination of s, machine Tq changes
the content of tape—outT1(1) infinitely many times. Let
foi,9 be an initial segment of s which is leng enough to
insure that, upon examination of f5;, ¢, machine T4 changes

the content of tape—outT1(1) at least once.

In either case (2.1 or 2.2), machine Tq changes the con-

tent of tape—outT1(1) upon examination of fpj4q1. This will

happen infinitely many times as T4 examines the infinite

sequence sg = f1fpf3... o Thus, with sg = f1faf3... on the

75

input tape of T4, the content of tape-outT1(1) at time w

will be "blur", As in Case 1, the sequence s3 that we have
constructed 1S an 3J-sequence. Thus, once again, we have
tricked T4 into producing "blur", an element of X~3, upon
examination of SH’ an J-sequence.

Case 3. The "blur" symbol is an element of XS'

In order to indicate that the input sequence is an 3-
sequence, Ty may, at some finite time, settle on a non-
"plur" element of XEI’ or it may change its mind infinitely

often about the content of tape—outT1(1), producing a

"blur™. In contrast, the elements of X~3 are all (ordinary)
elements of the output alphabet of T{. W must create a
contradiction by finding a ~3~sequence that forces Tq to
produce a "blur",

We must modify the construction to produce s a ~dg=

~3’
sequence. Choose fq as before, and assume that fq is

<1, 2, 3, ..., N> Choose f» to be a segment of t%*1, This

gives us <1, 2, 3, ..., N, n+l, n+1, ..., n+1>. Choose f3
to be a segment of s that starts with the positive integer
n+2. This gives us <1, 2, 3, ... n, n+l, ..., n+1l, n+2,
n+3, n+4, .,., n+m>, And so on. Notice that we always
Choose a new segment which has no integers in common with

) the previous segments. (e will say that these segments are

disjoint).. Using this trick, we are assured that the re-

76

sulting sequence, S~ g Is a -+sequence, As in Cases 1 and
2, we construct our sequence by alternating infinitely many

times between 3-sequences and ~3-sequences, producing a
"blur" on tape-outT1(¢1). O

This completes the proof of the simplified version of

main theorem.
3.3 Proof of the main result

Nov we drop the simplifying assumptions, and begin some

of the formal details of the proof of the general result,

Notation: In the discussion that follows, s will always

stand for an infinite sequence of positive integers and

s(1) or sy will denote the ith member of the sequence; f,
£y, fo,..., €tc. will be finite sequences of positive
integers.

Let T be an augmented Turing machine. Assume that s is
written on the input tape of T. W consider several finite
segments of the sequence s. Let £4 be <s{(1),...,s(n)> and
fo be <s(nq+1),...,s(n2)>. The notation fqfp will be used
to denote the concatenated sequence <s(1), aae,s(nq),s(nq+1),
...,s(np)>. If pis a positive integer, then f1p will re-
present the sequence <s(1),...,s(nq),p>. (I.e., fqp 1s

£4<p>.) V¥ say that f4 and f are disjoint iff

o

7

(Vi, 1sisn1)(\/j, nq+1sjsny)s(i) = s(J)].

With T, s, £4 and f, defined as above, let the first

digit of s(nqy+1) (respectively s(ny+1)) be on the k,th
(respectively k%) square of tape-inT.

s(1) s(2) ... s(ng) s(nqg+1) o0 sln,) slas+l) ...
1 1 t

2t [} [} 1

L 1
! 1
A |
T visits the kqth T visits the kpth
square at time t4 square at time tj
{ s 3
fq £2 f3 e
i
S * e o

Let t1 (respectively t,) be the smallest positive integer

such that position—irF(S) = kq (respectively position-inT(s)

£q L2
= kp). The integer ty (respectively t,) represents the ear-

liest time when we can be assured that T has read all of f4

(respectively f,). Let i be a positive integer. W define

T(f1) T

tape-out (1) to be tape—outtgfz(i). Intuitively

tape—outT(f1)(i) is the symbol written on the i*h square of

the output tape of T as T begins to move past f1 for the

T(f4)

first time. W say that f, changes tape-out (1) iff for

some j, ty<istz, tape-out}(®) (1) = tape-outT(F1) (1),

78

This means that the symbol written on the i®® square of the

output tape of T does not remain constant as T proceeds to

include f, in its knowledge of the contents,of tape-in.

W say that f4 fixes tape-outT(i) 1Fff for any

finite sequence f,, if £4f, is encoded on the leftmost
squares of tape-inT, and f, is disjoint from f,, then f,

does not change tape-outT(f1)(i). Intuitively, this

means that once T has examined f4 on its input tape, the
i*h symbol on the output tape of T will never be changed
again (provided T does not find another occurrence of an

integer that occured in fq).

The following lemmas are trivial consequences of the de-

finitions of "changes" and "fixes", and are stated without

proof .

Lemma 3.2. Let s = f4fpf3..., as above, Let i be a positive
integer. If, for infinitely many j, fj.q changes

T(fq... T(s)

£3) .
tape-out J7(1) then tape-out (i) = "blur",

Lemma 3.3. Let s = f4f,f3..., as above. Let i be a positive

integer. If f5 changes tape-outT(f1)(i), then £ 1S a non-

empty sequence.

Lemma 3.4, Let s = £4f,f3..., as above. Leti be a positive

integer. . If £ changes tape~outT(f1)(i), then fof3 changes

79

tape—outT(fT)

(i).
Lemma 3.5. Let s = f4fof3..., With £ disjoint from f£,, for

each j>¥. Let i be a positive integer. If f£q fixes

tape-outT(i), then tape-outz(S)(i) = tape—oufr(f1)(i),

Lemma 3.6. Let s = f4f,f3..., with f5 disjoint from £q. Let

1 be a positive integer. If £y fixes tape-outT (i) ,then
f1f, fixes tape-outT (i),

VW will use the notation and definitions given above to
construct sequences of positive integers. These sequences
will force our infinite Turing machine to take at least w2

time to solve Problem 2.

In solving Problem 2, a machine is given an input tape

containing an infinite sequence of positive integers. The

machine must examine each member of the sequence (or at
least all-but-finitely-many members of the sequence) . Thus
the action of the machine will take at least « time, W di-
vide the machine inte two parts, T4 and T,., The first part,
T4, is an augmented Turing machine which performs the first
w steps. The second part, Ty, reads the output of Ty and

performs all other steps necessary te solve Problem 2.

Since T4 performs » steps, we can increase its duties by

insisting that i1t make a duplicate copy of its input tape on

80

alternate squares of its output tape, This work can be
intertwined with the machinets other duties, so that the mo-
dified machine still has worst case running time w. This
added work certainly does not decrease the chance that the
combined machine T4,T, can solve Problem 2, In fact, it
provides T, with a second copy of information that is al-
ready available to it by definition of tape-inT2. (Recall
from the definition of an infinite Turing machine that
tape-inTi = tape-in”fi‘1 u tape-@utzi“T;) why, then do we
insist on having Ty make this oopy of its input tape? If T4
does this, then we can simplify the definition of tape-inTe.
V¢ can assume that tape-inT2 = tape—outi‘. This is'because
all the information contained on bape—inT1 u tape-outIT 1S

encoded on tape—outI1. Given this simplified definition,

anything we observe about tape~outz1 is also true about
tape—inTz. This will be useful in the proofs of several
lemmas.

In the above paragraph we argued that we can, without
loss of generality, increase the duties of machine T4 by in-
sisting that 1t copy the squares of its input tape on alter-
nate squares of its output tape, |In this paragraph we in-
crease the machine's duties even further. Recall the ma-

ohine of Example 2 in Section 1.1. That machine recorded,

on a square of its output tape, the number (modulo 2) of oc-

- - . t
currences of 42 that it found on its input tape. Ve create

. We insist
a similar duty for our Problem 2-machine, Tq-

81

that machine T4 record, on the leftmost square of its output

tape, the number (mod 2) of squares: that it has visited on

tape-inT!, the content of tape-outTV(1) will oscillate end-

On first sight this added duty seems to be a waste of
the machine's effort, The content of tape-out (1) will be
of no use in solving Problem 2. Furthermore, the content of
this square is completely predictable; i,e., ne matter what
kind of sequence is encoded on tape—inTT, the content of
tape—outI‘(H is always "blur". But that predictability is
exactly what makes this duty important. When we increase
the machine's duties this way, We guarantee that
tape-OUtT1(‘l) is not fixed by any finite initial segment
of the sequence encoded on tape—inTT. This will be useful
in the proof of the main lemma (Lemma 3.9). Notice also
that, as in the above discussion on tape-copying, adding
this counting-mod-2 to the list of the machine's duties does
not increase the running time of the machine, nor does it
decrease the chance that the combined machine T4,T2 can

solve Problem 2.

The remarks made in the last three paragraphs are sum-

marized in the following definitions and lemma:

82

Definition, Let T4 be an augmented Turing machine. For

each positive integer i, let t; be the smallest positive in-

teger such that position—inzhi. Then Tq is called a
i

copying machine' (or, for emphasis, an augmented copying

Turing machine) if

T -
tape-outt1(2i) = tape-inT1(i)
for every i, for every t2t;.

Definition. Let Ty and t; be defined as above. Then T4 is

called a counting machine (or, for emphasis, an augmented

counting Turing machine) if

/
|"even" if i is even

tape-outz!(1) = |

i 1
["odd" if ¥ IS odd
\

for every positive integer i.

Lemma 3.7. If Problem 2 can be solved by an infinite Turing
machine whose worst case running time IS wn, then Problem 2
can be solved by an infinite Turing machine whose worst case
running time is wn and'whose first augmented Turing machine

IS a copying and counting machine.

The proof of Lemma 3.7 follows trivially from the re-

marks made above. Henceforth when we refer to an infinite

Turing machine T{,T, to solve Problem 2, we will assume that

T, is a oopying and counting machine., Notice that, as a

consequence of the definition, a copying machine always per-

forms o steps.

Returning to our main goal, we are preparing to prove
that an infinite Turing machine T4,T, which solves Problem 2
takes at least wB~wtime. In order to show this, we must find
sequences that force T, to take at least w time. To do this
We will show that T, cannot do its job without examining in-

finitely many squares of the output tape of T4. Surpri-

singly, T, has very little to do with the proof. What we
actually show is that the answer to Problem 2 is not encoded
on finitely many squares of the output tape of Tq{. W for-

malize this notion in the following definitions:

Definition. Let n be a positive integer. An augmented

Turing machine, TI, is n-ambiguous if there is a ~3-

sequence, s~3, and an d-sequence, SH’ such that

tape—outz(s~3)(i) = tape—outz(sé)(i)

for all ign. The ~3-sequence IS said to n=wlitness the
n-atnbiguity of T4« The 3J-sequence is said to

n-cowitness the n-ambiguity of Tq.

84

Definition. An augmented Turing machine, Tq,. is Hgiggﬁﬁiz/
‘ambiguous, if there is a ~3-sequence, s.5, such that, £or
every positive integer n, S~ 3 n-witnesses the n-ambiguity of

T1. The ~3-sequence is said to witness the uniform ambi”

guity of T1.

Notice that if a ~3-sequence Witnesses the uniform gmbi-~

quity of T4, then for each positive integer n there must pe

an d-sequence that n-cowitnesses the n-ambiguity of Tq-
. el [0}
The uniform ambiguity of T, is a sufficient condition ¢
force Tq,T, to take at least w2 time. This is stated for-

mally in the next lemma.

. . h
Lemma 3.8. Let Ty and T, be augmented Turing machines whi€

satisfy the following conditions:

(a) T4 iIs a copying machine

(b) T4 is uniformly ambiguous, and

(e) the infinite Turing machine T{,T, solves problem 2-
Then the worst case running time of Tq,Ty is wZ2.

_ at
Proof, Since Tq 1s-a copying machine we can assume th

. . ; s W
tape-inT2 = tape—outE‘. We also know that Ty perfor®

85

steps, since It copies its entire input tape onto its output !

tape, V¢ must show that the worst case running time of T,

IS W . 1

Let s.3 be the infinite -3-sequence which witnesses the
uniform ambiguity of Tq. Assume that s.3 Is written on the
input tape of Tq. After T4y has performed itsS w-many
steps, machine T, must examine the output tape of T and
draw the conclusion that the sequence given to T4 was a ~d-

sequence. W claim that T, cannot do this by examining only
finitely many squares of tape-outT?,

Assume the contrary. Let n be a positive integer. Let
T, halt after examining n squares of tape-outTl, Since the
input to Ty was a ~3-sequence, T, Writes "~3-sequence", in
some form, on its output tape before halting. By the n-
ambiguity of TI, there is an n-cowitness sequence, S3,» sSa-
tisfying tape—out£1(s§l)(i) = tape-—outgﬂ(s"a)(i) for all

isn. So if we had written s3 on the input tape of T4, ma-

chine Tp would have examined the same symbols on the same n

squares of tape—outT1, and thus would have halted after wri-
ting the same message; namely, that Tq had been given a ~d-

sequence. Since sg3 is an 3-sequence, this conclusion would

be incorrect.

\ Therefore T must examine infinitely many squares of

tape-‘outn. It cannot do this in finitely many steps. So

the worst case running time of T, is w, and the worst case

running time of T4,T, IS w2.

Lemmas 3.7 and 3.8 combined with the main lemma (Lemma

3.9) will yield the desired result. W are now prepared to

state and prove the main lemma.

Lemma 3.9. Every augmented copying and counting Tdring ma-

chine 1s uniformly ambiguous.

Proof. First we give the intuitive idea. After that we

will present the proof in rigorous detail,

We start by constructing a sequence s.g. The idea be-
hind the construction is quite simple: Construct s.3 SO as
to fix as many squares as possible, and force the rest of
the squares to contain a "blur". Begin with s_g being
the empty sequence. Choose the leftmost square-of
tape—'outT1 whose content is fixed by some finite sequence
£1. Let i4 be the position of this square on the output

tape of Ty, (Thus, the square itself is called

tape—outT1(11). We are certain that such a square can be
found because of the assumption that T4 is a copying ma-
chine.) Extend s-], the empty sequence, by concatenating f4

3 T . _
onto it. Now the square tape-out 1(iq) is fixed by s~3. By
T
the choice of i4, no square to the left of tape-out '(iq)

can be fixed by any finite extension of s.3. We can foree

S

e

the symbol in each of these squares to change by extending

s.3 appropriately. So we have

The content of each of these

squares will be changed at The content of this
least once as Tq examines s.3 square is fixed by s.g

Al

- A

NG

tape—outTT(i1)

Let tape—outT1(12) be the next square (the leftmost square
that is to the right of tape—outT1(i1))\Nhose content can be
fixed by some finite extension, s.3f,, of s.3, where fo s
disjoint from s.J. Extend.s.3 by concatenating f, onto it.
Now the squares tape—-oug}(i1) and tape—outTT(iz) are fixed
by s.3. By the choice of iy, no square between
tape—outTT(i1) and taps—outT1(12) can be fixed by any finite
extension, s.3f, of s.3, as long as we insist that f be dis-
joint from s.3. In eaoh square to the left of
tape-outT1(i1), and each square between tape—outT1(i1) and
tape—outT1(12) we can force the symbol to change by exten-

ding s.3 appropriately. Now we have

‘88

Changed at least Changed 'at least

twice as T4 exa- Fixed once as Ty exa- Fixed
mines s. J by s.3 mines s_g3 by s.3
A ﬁl

RO 7 C o é%%/

. b 1

T !
tape-out 1(11) tape—outT1(12)

The next square that can be fixed by a finite extension of
s.3 will be to the right of tape—outT1(12). Choose the
leftmost such square, and repeat the extension process for

s.g. Doing this several times, we get the output tape which

IS illustrated in the figure on the next page

Extending s.g infinitely many times, we get a ~3-sequence,

s.3, which fixes the squares i4,i3,i3, .as and forces Tq to

produce "blur" in all the other squares

We must show that, for each positive integer n, the se-
quence s.g n-witnesses the n-ambiguity of T{. W do this in

the following way:

Let tape-outT1(1).....tape—outT1(n) be some finite ini-

Tq,3
) tial piece of the output tape of TI. Let tape-out T(iq),

...,tape-~outi1(i,) be the squares in that initial piece that

s

L] se

22UO0 jseaT

3= 2938uBY)

SaUTWEXS .

Amﬂv_Hpsoumamp

Aﬁﬂvraa:oumamp

21 —> N§S§§§ -

-)\ i - J — J
Y Y Y

m1w £~ E~g m1m Aq E-s

soutmexs lp paxTd Sssutuexa i poxXIg ssutwexs lg

Se sauwig Se seuwil se meWu

z-3 qsest L-% 3sesT - A 3sesl

1= 88ueQ) 1= @©JIBu=sy) 1= ©3uey)

90

were fixed by initial segments of s.3. Let f: be the lar-
gest of such initial segments of s.3. Then f: fixes each of
tape-outT1(iq),...,tape—outTl(iz). So if s3 is an infinite
J-sequence with initial segment f:, and if the rest of S is
disjoint from f:, then sj and s_J force T4 to produce
exactly the same ocutput on tape—outz1(i1),...,
tape-outzl(iz). Thus, in order to show that 5.3 n-witnesses
the n-ambiguity of Ty, we must construct an n-cowitness
3—sequence,‘53, by concatenating disjoint segments onto f:.
The sequence s3 must also be constructed so that it forces
the content of the other squares to be "blur®". If we do
this properly, then the content of tape-outz1(1),...,
tape—outz1(n) is the same whether Ty receives 5.3 or s3] as
input. So 5.3 n-witnesses the n-ambiguity of Ty, We do

this for arbitrary n.

We noﬁ give the proof in rigorcous detail. We are given
machine T4 which is an augmented copying and counting Turing
machine., We present an algorithm to construct a sequence,
S.q, Wwhich witnesses the uniform ambiguity of Tq{. Since s_g
is an infinite sequence, the algorithm to construct it is an
infinite algorithm. It should be emphasized that, although
tne sequence is given by an algorithm, we are concerned only
with the existence of the sequence, not with the availabi-

lity of a method for constructing it.

91

Construction of the witness s.3*

var Tq: augmented copying Turing machine

Program CON3STRUCTION-OF-s_ 3

var

s.4: sequence of positive integers
k,J,ixt integers
f,f",fy: finite sequences of positive integers

Fizxed, Unfixable: sets of positive integers

{initialize}

Let
Let
Let
Let
Let

For

S.3t= the empiy sequence
k:= O

ik:=]

Fitxed:= the empty set
Unfixable:= the empty set
ki= 1 toward w

tFind iy, the next square that can be fixed}

Let i, be the smallest positive integer greater
than i, _4 such that there is a finite sequence,
?, disjoint from s.J, such that sﬁgf fixes
tape-outT1(ik)

Let f be any finite sequence, disjoint from s.3,
such that s_gfr fi#es tape-outT1(ik)

{add i, to the 1list of Fixed squares}

Let Fixed:= Fixed u {iyg!

{add the squares between ip_¢ and i, to the

list of Unfixable squares}

92

For _j:: lk_']+1 Lo lk"1
Let Unfixable:= Unfixable y {j}

{change the content of all the Unfixable squares}

For each j ¢ Unfixable

Choose {',disjoint from s.3f, such that
f' changes tape-outT1(s"3f)(j)

Let f:= !

{enlarge the sequence s. 3l
Let fj:=

Let s._3J:i= s~3fk

The construction of s.3 partitions the squares of

T o . .
tape-out 1 into two disjoint sets, Fixed and Unfixable.
The action of T4 upon examining s.3 is illustrated in

the figure on the next page.

We must show two things about Program CONSTRUCTION-0QF~

5.3, namely
(1) that the algorithm will not halt unexpectedly, and

(2) that the algorithm constructs an infinite -~3J-sequence,

5.3, which witnesses the uniform ambiguity of T1.

Proof of (1). We must show that, for every positive integer
ki, we can complete the k™D jteration of the "For k" loop.

Te do this w2 muist show that

93

paSueyo

$393 ANHVFqQDOIQOp

ncm.n_ﬂv_Hp:oumamu poxT) S23°%8

uesmi13q sdJenbs yoes jo psZueysc s23938 A_ﬁvrwp:o:wamp

1uUsqUCD 8y3 ‘fuiefe psFuEys §398 DOX1J €138 ﬁwﬂvPHu:onmamp jo JO qus3uod
AwﬂUhhuzosmamu JO 13871 =2Ul ﬁmﬂv_Hp:oamamp 1187 a8yl o3 aJenbs ayy *1 Tuilpead

01 sJenbs YoB® JO 1UBGUCD BY] 30 1uU39UO0D 3YyL yoea JO 3U8qUCD SYL - saustuty b1 usuypm

{(1.1) there is a positive integer, ik1’ satisfying the re-

quired conditions, and

(1.2) in the "For each J € Unfixable" loop there is always a

finite segquence [' satisfying the required conditions.

Proof of (1.1). Assume that the k1—13t iteration of the
"For k" loép nias just been executed. Then ik1-1 is defined
and s.9 is the finite sequence f1f2...fk1_1. Let ik1 be any
even positive integer greater than ik1—1° Lat fkl be any
finite (possibly empty) sequence such that the sequence
f1f2...fk1 is long enough to occcupy at least ik1/2 squares
on the input tape of T4. Since Ty is a copying machine, it
makes an exact copy of its input tape on alternate squares
of its output tape. Therefore, having f1f2...fk1 written
on tape—inT1 determines completely the content of
tape—outT1(ik1). We cannot change tape-outT1(ik1) by
extending f4fp...fy., Thus tape—outTl(iKT) is fixed by

SEPTRIS S

Proof of (1.2). Assume that the k1th iteration of the "For
k"' loop is being executed, and that execution of the "For
Jiz 1g.gq+] Lo i,-1" loop has jJust ended. At this instant,
s..Ei is the finite sequence f;fz...fk1_1, and Unfixable is a
finite set. We have also chosen an integer iy,, and a fi-

nite sequence f, disjoint from S such that S”ﬂf fixes

tape—outr1(ik1)' Let j be an element of Unfixable. We need

to show that there is a finite sequence, f1, disjoint from

T](S"ﬂf)(j

s.4qf, such that f' changes tape-out Y,

The positive integer J was made an cslement of Unfixable

during some iteration of the "For k" loop. At the time, k

had a certain value; call it kKg- Then

S~3 = f1f2.--fk1_1

f1f2"'fko‘1fk0"‘fk]-1°

By virtue of the choice of each f and f' in Program
CONSTRUCTION-OF-shﬂ,-fko...fk1_1f is disjoint from

f1f2...fk0_1a

The positive integer j was placed in the set Unfixable
during the k% iteration of the "For k" loop, so j is
greater than ik0-1 and less than ikO' By virtue of the way
in which ikO was chosen, we Know that there is no finite se-

quence, f, disjoint from f1f2...fk0_1 such that

f1f2...fk0_1f fixes tape-outT1(j).

Since fko...fk1_1f ls disjoint from f1fp...fy4-1,
f1f2"'fk0-1fko'--fk1—1f does not fix
tape-outT1(j), Thus, sﬁaf does not fix tape-outT1(j).
Therefore, there is a finite sequence, f', disjoint from

5~3f' such that f' changes tape-outT1(s”3f)(j).

96

Having concluded the proofs of items (1.1) and (1.2), we

procede to the proof of item (2). We divide item (2) into

three sub-items. We show that

(2.1) S.3 1s an infinite sequence,

(e.2) 5.3 i? a8 ~d-sequence, and

(2.3) 5.3 Witnesses the uniform ambiguity of Tq.

Proof of (2,1). Recall, from the discussion preceding the
definition of a counting machine, that tape—outT1(1) is not
fixed by any finite initial segment of the sequence encoded

1, Thus, in the construction of s.3, when k is f

an tape-in
equal to 1, the positive integer value assigned to i (=i9)
is sure to be greater than 1. Since ig = 0 andg iy > 1,
the value of j in the first iteration of the "For j" loop is
1. Thus, when k is equal te 1, the set Unfixable becomes a
non-empty set. Since elements are never removed from
Unfixable, the set Unfixable remains on-empty during the

course of the construction,

By item (1) above, the "For k" loop in Program
CONSTRUCTION-OF~5~3 undergoes g iterations. 1In each
iteration, Unfixable is a non-empty set. During each

iteration, for each j « Unfixable, we extend s.3j by adding,

97

among other things, a finite sequence f' which changes

T,(s_af _ .
tape-out ™} ~3)(jJ. By Lemma 3.3, f' is non-empty. Thus -
5.5 1s a concatenation of infinitely many non-empty se-

quences. Therefore, s.3 1s an infinite sequence,.

Proof of (2.2). In the course of the construction, whenever
we entend s.J, we do s0 by concatenating a finite sequence
which is disjoint from the initial segment of s_.J that has
already'been constructed, Clearly this makes s.J a ~ -

sequeance.

Proof of (2.3). We must show that, for every positive inte-
ger n, s_J n-Wwitnesses the n-ambiguity of T¢{. Thus for
every positive integer n we must find an n-cowitness se-~

gquence; namely, an d4-sequence, S s such that
tape—out;1(sﬂ)(i) = tape—out11(5"3)(i)

for all isn. We first determine the value of

T (5_3)

w

tape~-out (i), for each isn.

Let n be a positive integer. Let kK, be the smallest
value of k in CONSTRUCTION-OF—S_E such that ipzn. Let f:
= fi.-.fkn. Let leedikn

Unfixabley, = {] « Unfixableljsikn}. Note that the set
n

= {1 ¢ Fixedlisikn}. Let

(1,2,...,n} is a subset of Fixed;, v Unfixabley since
Kn Kp

iknzn. Naote also that Fixedikn n Unfixableikn = the empty

98

set. We will determine the value of tape—outr1(s”3)(i)
W

for each i ¢ Fixed:

ik, U Unfixablei

kn.

Let ky be a positive integer, less than or equal to Ky«
In CDNSTRUCTION-OF-SWQ, fko was formed by concatenating
several finite sequences. The first of these sequences, [,

. : o Ty, .

was chosen so that f1...fkoﬁ1f fixes tape~out ?(1k0). After
that, whenever a finite sequence was concatenated onto S~
it was disjoint from f1...fk0_1f. S0 by Lemma 3,6, f: fixes
tape—outT1(ikO). By Lemma 3.5, tape—outT1(s“3)(ikO) =

]

T{(fh),.
tape-out 1’701 (1ko).

How let j be an element of Unfixableikn. For concrete-~
ness assume that j was placed in the set Unfixable during
the koth iteration of the "For k" loop. For every positive
integer k, fy, was formed by concatenating several finite
sequences. If Kk is greater than or equal to kg, then one of
these sequences, ', was chosen so that f! changes

Ty(Fqen ey _y)

tape-out (J). Thus, by Lemma 3.4, fi, changes

(f1.’.f},‘(—1)

tape-—outT1 (j). This is true for infinitely many

values of k, so by Lemma 3.2, tape-outT1(s‘3)(j) = "blur™.
L}

Once again, let n be a positive integer. 1In order to
show that the sequence $.-3J, Jjust constructed, witnesses the
uniform ambiguity of Ty, we must provide an n-cowitness se-

quence, s3. We must do this for every positive integer n.

99

2 o] 5 such
Thus, for each n, we must construct an i-sequence, S3; ‘

that

*
tape-outET(SH)(i) T1(fnd (4

tape-out

for all 1 « Fixedikn, and

)

tape-out

(3)

"blur" for all j ¢ Unfixableikn,
where ikn and fz are related to n as described on page 89.

5 algo-
Now we fix the positive integer n, and present an alg

rithm to construct the n-cowitness sequence, S5J:

Construction of the n-cowitness 332

var Tq: augmented copying Turing machine

*

o N . . x 5
fn: finite Sequence of positive integer

Fixedikn ,
U”fixableikn‘ finite sets of positive integers
Program CONSTRUCTION—OF-SE
var s3ji sequence of positive integers
m,p: integers
fpsfy't finite sequences of positive integers

{initialize}

Let s3:= f:

¥
in f
Let mi= 1 + the largest integer that occurs 1 n

100

For p:= 1 toward w

{echange the content of all the Unfixable squarest}

For each j e Unfixablej
kn
Choose fp‘, disjoint from 53 such that
fp‘ changes tape-out

{enlarge the seguence 33}

The above algorithm is designed to construct a sequence,
| sg3, which forces tape-outz1(j) to be "blur" for every J «

Unfixabley Sequence s3 also forces tape—outi’(i) to be

Ky, ©

*
tape—outT1(fn)

(i) for each i e Fixedj, . The action of Ty,
n
upon examining 53 is illustrated in the figure on the next

page.
As in the construction of s.3j, we must show

(2.3.1) that the algorithm to ci1struct sg will not halt

unexpectedly, and

(2.3.2) that, for each n, the algorithm constructs an infi-
nite j-sequence, sg, which is an n-cowitness, with s_.3, to

the n-ambiguity of Tq.

Uy

P TpaxTd » T yoes 40J

1 no-ade

() qugyiyd i

38 paxXT} ST

utege psBueyd AHUPHp:ouwamp
sq08 hhuPHpso:mamp. pefueyo s493 Ahv_busotmamu JO JUS3UCD
JO qusjued 2Y3 JO auajuoo aul =YVl ﬁmm JuTpe9d

u

cxﬁmagmxawc: 3 [yoes Jdog xﬁmasmxﬂmcs 3 [yoes J0j soysiuty lI usuym

—_—— ——— ———— 1 1 r 1 T LAY

. - v w ul . - - I uw w * - - m .m.w Wl _N.H I __w.w *4%

_ I N
Y Y <ll|&
Y

m
7]

102

Proof of (2.3.1). We must show that we can always find a fi-
nite sequence, fp', disjoint from S 3, such that fp' changes
tape-outT1(53)(j)_

Assume that CONSTRUCTION—DF-33 has progressed to the
point where p has the value pg and j has the value jp- A

finite sequance, S J» has been constructed from the previous

iteration of the "For each J € Unfixableik " loop. The se-
. r

gquence f: is an initial segment of 57 In fact, 53 is of
the form fafqfp...fp 1 = FReq'mfy ' me..mfp 17,
Since m does not occur in f:, and fp' is always chosen to

be disjoint from the sequence which has already been con-

structed, fi'mf,'m...mf is disjoint from f}. Thus

1
pg-?

£qfo...f is disjoint from fy,

po-
The sequence f: Wwas chosen to be a particular initial

segment of s_3J. By the construction of s.3, and the choice

* P £ L P
ny we know that if f is a finite sequence which is

of
disjoint from f:, then f:f** does not fix tape-outT1(jo)-

But f1f2'°°fp0-1 1s a finite sequence and is disjoint from
fz. So f:f1f2---fpo—1 does not fix tape-outT1(jO). So

sy does not fix tape~outT1{jO). So there is at least one

finite sequence, fPO" disjoiﬁt from s3, such that fPO'

changes tape~outT1(jO).

Proof of (2.3.2). We want to show that for each positive in-

teger n, the sequence 23, constructed by the algorithm, is

103

an n-cowltness with s.3 to the n-ambiguity of T4. To do

this we must show that
(2.3.2.1) s3 is an infinite sequence,

(2.3.2.2) 53 is an 4-seguence, and

(2.3.2.3)
*
tape—outi1(53)(i) = tape-outT1(f”)(i)
for all i e Fixedikn, and
T](S“)
tape-out 37(3) = "pblur” for all j e Unfixablej -
: n

Proof of (2.3.2.1). Similar to the proof of (2.1).

Proof of (2.3.2.2) Notice that the integer m occurs infi-

nitely wmany times in sJ.

Proof of (2.3.2.3). Let i ¢ Fixedik . The sequence sj is
n

egqual to f:f1f2... where f1,f2,f3,... are all disjoint from

f;. So by Lemma 3.5,

w

*
tape-out T1(fn)

(i),

= tape-ocut

Let Jp « Unfixableikn. In the construction of s3, in

the "For each j e Unf‘ixableik " loop, when J takes on the
n

134

value j,, the segment of S} that has been constructed thus

far 1s finite, and we choose a finite sequence, fp’, which
changes tape-outT1(53j(j0). We concatenate fp‘ onto 5y in
constructing S3e This happens infinitely often in the con-

struction of $3s because of the "For p" loop. Thus, by

Lemma 3.2, tape-—outm

(jg) = "blur",
This completes the proof of Lemma 3.9. [j
We now present the main result of this paper.

Thecorem 2. Let T1,To> be an infinite Turing machine which
sa2lves Problem 2. Then the worst case running time of T1,7To

is w2,

Proof, By Lemma 3.7, it is sufficient to consider the case
where T, 1s a copying and counting machine. Then, by Lemma
3.9, Ty 1s uniformly ambiguous. By Lemma 3.8, the worst

case running time of T1,T5 1is w2. O

This completes the proof of the main result of this
paper. The result indicates that the combination of an
augmented Turing machine and é finite Turing machine, power-
ful thougn it méy oe, cannot decide whether or not an infi-
nite sequence of positive integers converges. Thus the
worst case running time for a machine that solves Problem

2 is at least w2. On page 34, and again on page 63, we

105

stated, but did not prove, that this combination of machines
cannot find the limit of an infinite sequence of rationals,

We can now prove that result.

Corollary. Let Ty,T, be an infinite Turing machine which

sclves Problem 1, Then the worst case running time of T4,To
is wZ.

Proof. Aésume the contrary ~ that the worst case running
time of Tq,Tp is w. Let s = {sj}. , be a sequence of posi-
tive integers. For i even, let x3 = 1 and y; = s(i/p). For
i odd, let x5 = 0 and y; = 1. Then {xi/yi}§=1 converges iff

) W w
s goes to infinity. Give {xi}i=1’ {Yi}i:1 to Tq,To. After
w plus finitely many steps T;,T, reports that {xi/Yi}§d1
converges or does not converge. This can be interpreted as

an answer about s, contradicting Theorem 2.

3.4 One further result

As a final result on infinite Turing machines we wWill.
show that wn is "infinite-time constructible" for every

positive integer n.

Definition. Let Tq, ..., T, be an infinite Turing machine.

We say that Ty, ..., Tn halts on input s iff, given input

s, the machine Ty, ..., T, performs less than wn steps. The

n

106

wn-halting problem is then stated as follows: Given an
infinite Turing machine T4y +++, T, and an input s, does
T1s »eny Tn halt on s7

i Note that the wl-halting problem is almost the standard
halting problem for finite Turing machines. The only dif-
ference is that T4 is an augménted Turing machine, so it
can have infinitely many non-blank squares on its input

tape.

Theorem 3. Let H, be an infinite Turing machine which
solves the uwun-~halting problem. Then H, has worst case run-

ning time wn.
Proof. Let wt, be the worst case running time of Hpo

First wa argue that ths n. Construct Hn as in Example

1 of Section 1, I.,e., given a machine Ty o+, T, and input

n
s, let H, write "does-not-halt™ on its output tape, and then

simulate the action of T4, ..., Ty on s. If T eeey T

ol n

halts before time wn, then H, erases "does-not-halt" and
writes the "halts" symbol on its output tape. This symbol

is the oultput of H, at time wn.

Next we use a variant of the standard halting problem

argument to show that thz n. Assume the contrary. Then Hn

always halts before performing wn steps. Define a machine,

137

dp ', which simulates Hy, up to the point when t, halts, At
that point H,"' does the opposite of what is written on its
output tape. (I.e., if H, sald "halts", then H,' continues
running until time wn; if H, said "does-not-halt™, then Hy'

halts.) It is easily seen that the act of providing Hpy '

Wwith itself as input leads to a contradietion. (I

108

References

E1} B. Burd, "Decomposable Collections of Sets", Notre Dame
Journal of Formal Logic 25, 1984, pp.17-26.

(2] D. E. Muller, "Infinite Sequences and finite machines",
AIEE Proc., Fourth Annual Symp. Switching Circuit Theory
and Logical Design, 1963, pp. 3-16.

{3] J. R. Buchi, "COn a decision method in restricted second
order arithmetic", Proc. Internat. Congr. Logic, Method,
and Philos. Sci. 1950, Stanford Univ. Press, Stanford,
California, 1962, pp. 1-11.

(4] R. McNaughton, "Testing and generating infinite sequen-
ces by a finite automaton", Information and Control 9
1966, pp. 521-530,

[5] 4. O. Rabin, "Decidability of second-order theories and
automata on infinite trees", Trans. AMS 141, 1969, pp.
1_350 .

[6] Z. Bavel, Introduction to the Theory of Automata,
1983, Reston Publishing Co., Reston, Virginia.

L7} H. Rogers, Jr., Theory of Recursive Functions and Ef-
fective Computability, 1967, McGraw-Hill, New York,
p' 3“7-

(8] S. C. Kleene, "Recursive functionals and quantifiers of
finite types I", Trans. AMS 91, 1959, pp. 1~-52; and
"... II", Trans. AMS 108, 1963, pp. 106-142,

[9) H. G. Rice, "Recursive real numbers", Proc. Amer., Math.
Soc, 5, 1954, pp. 784-791,

[10] A. Mostowski, "Computable sequences™, Fundamenta Mathe-

maticae Y4, 1957, pp. 37-51.

[17] A. H. Lachlan, "Recursive real numbers™", J, Symbolic
Logic 28, 1963, pp 1-16.

1971

1976

197677

1977-30

1980-83

1980-
present

109

VITA
Barry Abram Burd
A,B. in Mathematics, Temple University, Philadel-
phia, Pennsylvania,

Ph.D., in Mathematics, University of Illinois,
Urbana, Illinois.

Assistant Professor, Department of Mathematics,
Syracuse University, Syracuse, New York.

Instrucror, Department of Mathematical Sciences,
Alverno College, Milwaukee, Wisconsin.

Director of Academic Computing, Drew University,
Madiscon, New Jersey,

Assistant Professor, Department of Mathematics and
Computer 3cience, Drew University, Madison, New
Jersey.

