
 1

Using Two-Dimensional Arrays

Great news! What used to be the old one-floor Java Motel has just been
renovated! The new, f ive-floor Java Hotel features a free continental
breakfast and, at absolutely no charge, a free newspaper del ivered to your
door every morning. That’ s a 50-cent value, absolutely free!

Speaking of things that are continental, the designers of the new Java Hotel
took care to number f loors the way people do in France. The ground floor (in
French, “ le rez-de-chaussée”) is the zero f loor, the f loor above that is the f irst
f loor, and so on. Figure B-1 shows the newly renovated hotel.

Figure B-1: A big, high-rise hotel.

��������	
�����
��
��
��������	����
�

�
��
��

You can think of the hotel as an array with two indices -- a two-dimensional
array. You declare the array this way.

int guests[][] = new int[5][10];

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

 2

The guests array has f ive rows (numbered 0 to 4, inclusive) and ten columns
(numbered 0 to 9, inclusive). To register two guests in Room 9 on the f irst
f loor, you write

guests[1][9] = 2;

TechnicalStuff
The people who do serious Java l ike to think of a two-dimensional array as an
array of rows (that is, an array of ordinary one-dimensional arrays). With this
thinking, the rows of the guests array (above) are denoted guests[0],
guests[1], guests[2], guests[3], and guests[4]. For a picture of al l this, refer to
Figure B-1.

A complete program that uses this guest array is shown in Listing B-1.

Listing B-1 An array of arrays

import static java.lang.System.out;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class ShowGuests {

 public static void main(String args[]) throws

FileNotFoundException {
 int guests[][] = new int[5][10];
 Scanner myScanner = new Scanner(new

File("GuestList"));

 for (int floor = 0; floor < 5; floor++) {
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 guests[floor][roomNum] = myScanner.nextInt();
 }
 }

 for (int floor = 4; floor >= 0; floor--) {
 out.print("Floor " + floor + ":");
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(" ");
 out.print(guests[floor][roomNum]);
 }
 out.println();
 }

 out.println();
 out.print("Room: ");
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(" ");

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

 3

 out.print(roomNum);
 }
 }
}

Figure B-2 shows a run of the code from Listing B-1. The input f i le,
GuestList, looks l ike the f i le in Listing 11-1, except that the f i le for this
section’ s program has 50 lines in it.

OnTheWeb
You can snare a 50-line GuestList fi le along with this document’ s code
l istings from the book’ s Web site.

Figure B-2: Guest counts.

In Listing B-1, notice the primary way you handle a two-dimensional array --
by putting a for loop inside another for loop. For instance, when you read
values into the array, you have a room number loop within a f loor number
loop.

 for (int floor = 0; floor < 5; floor++) {
 for (int roomNum = 0; roomNum < 10; roomNum++) {

Because the roomNum loop is inside the f loor loop, the roomNum variable
changes faster than the f loor variable. In other words, the program prints
guest counts for all the rooms on a f loor before marching on to the next f loor.

Remember
The outer loop’ s variable changes slower; the inner loop’ s variable changes
faster.

In displaying the hotel ’ s numbers, I could have chosen to start with f loor 0
and go up to f loor 4. But then the output would have looked like an upside-
down hotel. In the program’ s output, you want the top f loor’ s numbers to be
displayed first. To make this work, I created a loop whose counter goes
backwards.

for (int floor = 4; floor >= 0; floor--)

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

 4

So notice that the loop’ s counter starts at 4, goes downward each step of the
way, and keeps going down unti l the counter’ s value is equal to 0.

��������	
�����
��
��
��������
����

This section does “one better” on the stuff from earl ier sections. I f you can
make a two-dimensional array and an array of objects, then why not join these
ideas to make a two-dimensional array of objects. Technical ly, this ends up
being an array of arrays of objects. How about that!

First you define your two-dimensional array of Room objects. (The
declaration of the Room class comes right from Listing 11-5.)

Room rooms[][] = new Room[5][10];

Next, you do that all-important step of constructing an object for each
component in the array.

for (int floor = 0; floor < 5; floor++) {
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 rooms[floor][roomNum] = new Room();

Then you read values into the array components’ variables, wri te values, and
so on. A complete program is shown in Listing B-2.

Listing B-2 A two-dimensional array of objects

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
import static java.lang.System.out;

public class ShowRooms {

 public static void main(String args[]) throws

FileNotFoundException {
 Room rooms[][] = new Room[5][10];
 Scanner myScanner = new Scanner(new

File("RoomList"));

 for (int floor = 0; floor < 5; floor++) {
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 rooms[floor][roomNum] = new Room();
 rooms[floor][roomNum].readRoom(myScanner);
 }
 }

 for (int floor = 4; floor >= 0; floor--) {

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

 5

 out.println("Floor " + floor + ":");
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(" ");
 rooms[floor][roomNum].writeRoom();
 }
 out.println();
 }
 }
}

By the time you’ re done, the program that uses objects is actual ly simpler
than the code that doesn’ t use objects. That’ s because, in wri ting the code
with an array of objects, you’ re taking advantage of methods that are already
written as part of the Room class, such as readRoom and writeRoom.

A run of the code in Listing B-2 displays information about al l 50 of the
hotel ’ s rooms. Instead of showing you al l that stuff, Figure B-3 shows you the
f irst several l ines in the run. (You don’ t need to know about every room in the
Java Hotel anyway.) The input to the code in Listing B-2, the RoomList f i le,
looks just l ike the stuff in Listing 11-7. The only difference is that the
RoomList f i le for this section’ s code has 150 lines in i t.

OnTheWeb
You can snare a 150-line RoomList f i le along with this document’ s code
l istings from the book’ s Web site..

Figure B-3: Starting a run of the code from Listing B-2.

With al l the examples building up to Listing B-2, the code in the l isting may
be fairly uneventful. The only thing you need to notice is that the l ine

rooms[floor][roomNum] = new Room();

is absolutely, indubitably, 100-percent required. When you accidentally leave
off this l ine (not “ i f you leave off this l ine,” but “when you leave off this

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

 6

l ine”), you get a runtime error message saying
java.lang.NullPointerException.

--
 C

on
ve

rt
ed

 fr
om

 W
or

d
to

 P
D

F
 fo

r
fr

ee
 b

y
F

as
t P

D
F

 -
-

w
w

w
.fa

st
pd

f.c
om

 -
-

http://www.fastpdf.com

