Using Two-Dimensional Arrays

Great news! What used to be the old one-floor Java Motel has just been
renovated! The new, five-floor Java Hotel features a free continental
breakfast and, at absolutely no charge, a free newspaper delivered to your
door every morning. That's a 50-cent value, absolutely free!

Speaking of things that are continental, the designers of the new Java Hotel
took care to number floors the way people do in France. The ground floor (in
French, “le rez-de-chaussée”) is the zero floor, the floor above that is the first
floor, and so on. Figure B-1 shows the newly renovated hotel.

./\,_

e guests[4]

guests[3]

[R A B 'S B -

guests[1l] [9]

Figure B-1: A big, high-rise hotel.

A two-dimensional array of primitive
values

Y ou can think of the hotel as an array with two indices -- a two-dimensional
array. You declare the array this way.

int guests[][] = new int[5][10];

http://www.fastpdf.com

The guests array has five rows (numbered 0 to 4, inclusive) and ten columns
(numbered 0 to 9, inclusive). To register two guests in Room 9 on the first
floor, you write

guests[1][9] = 2;

Technical Stuff
The people who do serious Java like to think of atwo-dimensional array as an
array of rows (that is, an array of ordinary one-dimensional arrays). With this
thinking, the rows of the guests array (above) are denoted guests[0],
guests[1], guests[2], guests[3], and guests[4]. For a picture of all this, refer to
Figure B-1.

A complete program that uses this guest array is shown in Listing B-1.

Listing B-1 An array of arrays

import static java.lang. System out;

import java.io.File;
i mport java.io.FileNot FoundExcepti on;
i mport java.util.Scanner;

public class ShowGuests {

public static void main(String args[]) throws
Fi | eNot FoundExcepti on {
int guests[][] = new int[5][10];
Scanner nyScanner = new Scanner (new
File("CQuestList"));

for (int floor = 0; floor < 5; floor++) {
for (int roomNum = 0; roomNum < 10; roomNum++) {
guests[floor][room\un] = nyScanner. nextlnt();

}
for (int floor = 4; floor >= 0; floor--) {
out.print("Floor " + floor + ":");
for (int roomNum = 0; roonmNum < 10; roomNum++) {
out.print(" ");
out.print(guests[floor][room\um);
}
out.println();
}
out.printlin();
out. print("Room ");
for (int roomNum = 0; roomNum < 10; roomNum++) {

out.print(" ");

http://www.fastpdf.com

out. print(roonNum ;

}

Figure B-2 shows arun of the code from Listing B-1. The input file,
GuestList, looks like the file in Listing 11-1, except that the file for this
section’s program has 50 linesin it.

OnTheWeb

Y ou can snare a 50-line GuestList file along with this document’s code
listings from the book’s Web site.

C:“JavaPrograms >java ShowGuests
Floor 4: 5 2 2 1 a
Floor 3:

3
5
3
1
>

C:~JavaPrograms

Figure B-2: Guest counts.

In Listing B-1, notice the primary way you handle a two-dimensional array --
by putting a for loop inside another for loop. For instance, when you read
values into the array, you have a room number loop within a floor number
loop.

for (int floor = 0; floor < 5; floor++) {
for (int room\um = 0; roomNum < 10; roomNum++) {

Because the roomNum loop is inside the floor loop, the roomNum variable
changes faster than the floor variable. In other words, the program prints
guest counts for all the rooms on a floor before marching on to the next floor.

Remember

The outer loop’ s variable changes slower; the inner loop’ s variable changes
faster.

In displaying the hotel’s numbers, | could have chosen to start with floor 0
and go up to floor 4. But then the output would have looked like an upside-
down hotel. In the program’s output, you want the top floor’s numbers to be
displayed first. To make this work, | created aloop whose counter goes
backwards.

for (int floor = 4; floor >= 0; floor--)

http://www.fastpdf.com

So notice that the loop’ s counter starts at 4, goes downward each step of the
way, and keeps going down until the counter’s value is equal to 0.

A two-dimensional array of objects

This section does “one better” on the stuff from earlier sections. If you can
make a two-dimensional array and an array of objects, then why not join these
ideas to make a two-dimensional array of objects. Technically, this ends up
being an array of arrays of objects. How about that!

First you define your two-dimensional array of Room objects. (The
declaration of the Room class comes right from Listing 11-5.)

Room roons[][] = new Rooni5][10];

Next, you do that all-important step of constructing an object for each
component in the array.

for (int floor = 0; floor < 5; floor++) {
for (int roomNum = 0; roonmNum < 10; roomNum++) {
roons[fl oor][room\un] = new Room();

Then you read values into the array components’ variables, write values, and
so on. A complete program is shown in Listing B-2.

Listing B-2 A two-dimensional array of objects

import java.io.File;

i mport java.io.FileNot FoundExcepti on;
i mport java.util.Scanner;

import static java.lang. System out;

public class ShowRoons {

public static void main(String args[]) throws
Fi | eNot FoundExcepti on {
Room roons[][] = new Roon{5][10];
Scanner nyScanner = new Scanner (new
File("RoonlList"));

for (int floor = 0; floor < 5; floor++) {
for (int roomNum = 0; roonmNum < 10; roonmNum++) {
roons[fl oor][room\un] = new Room();
roons[fl oor] [roomNuni . readRoon{ nyScanner) ;

}

for (int floor = 4; floor >= 0; floor--) {

http://www.fastpdf.com

out.println("Floor " + floor + ":");

for (int room\um = 0; roonmNum < 10; roomNum++) {
out.print(" ");
roons[fl oor] [roomN\uni.witeRoon();

out.println();

}

By the time you’'re done, the program that uses objectsis actually simpler
than the code that doesn’t use objects. That’s because, in writing the code
with an array of objects, you're taking advantage of methods that are already
written as part of the Room class, such as readRoom and writeRoom.

A run of the code in Listing B-2 displays information about all 50 of the
hotel’ s rooms. Instead of showing you all that stuff, Figure B-3 shows you the
first several linesin the run. (You don’t need to know about every room in the
Java Hotel anyway.) The input to the code in Listing B-2, the RoomList file,
looks just like the stuff in Listing 11-7. The only differenceis that the
RoomList file for this section’s code has 150 lines in it.

OnTheWeb

Y ou can snare a 150-line RoomL.ist file along with this document’s code
listings from the book’s Web site..

C:snJavaPrograms >java ShowRooms
Floor 4

5108 . yes

5108 . yes

51608, yes

5
2
2
1
a
3
3
5]
5]
5]

o=]
i
-]
o
]
[

B 5 (5 L e

Figure B-3: Starting a run of the code from Listing B-2.

With all the examples building up to Listing B-2, the code in the listing may
be fairly uneventful. The only thing you need to notice is that the line

roons[fl oor][room\uni = new Roomn();

is absolutely, indubitably, 100-percent required. When you accidentally leave
off thisline (not “if you leave off thisline,” but “when you leave off this

http://www.fastpdf.com

line”), you get a runtime error message saying
java. |l ang. Nul | Poi nt er Excepti on.

http://www.fastpdf.com

