Weaves

Barry Burp* and Gaisi TAKEUTI

In this paper we introduce the notion of a weave. We will show how to
combine weaves in various ways to get other weaves. One such method of
combination will give us a structure that generalizes the idea of an infinite win-lose
game with perfect information (henceforth referred to as a Gale-Stewart game), but
still has many of the properties that Gale-Stewart games have. (For instance, the
determinateness properties of QGale-Stewart games can be translated into the
language of weaves.) All terms used in this paper in connection with Gale-
Stewart games are defined in [1] and [2].

We begin with a definition:

Let 8 and R be subsets of P(D), (8, ®) is called a wave of D if the following
conditions are satisfied

1. VAe® VBe®R ANB=1
2. VieD 34¢® 3Becr {(d}=A4ANB

A weave will be compared (in a sense to be explained later) to a single move of a
Gale-Stewart game.

We proceed to formulate a notion of “union” of weaves and two motions of
“product” of weaves.

Proposition 1. Let (8, R) be a weave of D and {D;|deD} be a family of
mutally disjoint sets. Let (2;, ®,) be a weave of D, for every deD. Define

L={ U fd))deAfe O &)
ded deD
R={ U gd)]BeR ANge T R}
deB deD
Then (8, ®) is a weave of D= UDD,. (2, R) is called a sum of {(%, R,)|de D).
d€
Proof. Let 4e® Be@, fe O & and ge I R,.
2€D deD
(U f(@) N (U _g(d) =f(do) N g(do)
dEA deB
where {d,} =4 N B. Moreover
fldy) Ngld))=1.

* The proof of proposition 7 is part of B. Burd’s Doctoral Dissertation at the University of
Tllinois at Urbana-Champaign.
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Let PédUDDd. There exists a unique dyeD s.t. peD,;,. Let 4e & BeR
El
satisfy 4 N B= {d,}. Then there exists 4°¢8,,, B°c R4, st. 4° N B°= {p}.
Take f & ¢ to satisfy f(d,)=4° & g(d,) = B°.
Proposition 2. Let (2;, ®,) be a weave of D; for every teI. Define

D=1D;,

ier
Af=T1f(z) for fell &
iel ier
and

Bg=1g(i) for gell R;.
iel

iel
Finally define
8= {ds|fell £} and R={Belgell R;}.
iel iel
Then (8, R) is a weave of D. This weave is called a product of {(8;, R,)|tel}
and denoted by _HI (., Ry '
fX=3 —_—
Proof. Let fell ; and ge Il R, 47N By = I (f(5) Ng(s)). Since f(2) N g(e)
i€ i€ ie
=1 for every 1el, AfN B, =1. Let heD. For every 4¢I, there exists 4;¢&;
and B;e R; st. {h(t))=4;NB;. Define f by f(3)=4; and ¢ by ¢g(s)=B;. Then
AfNBg = {R}.

Remark. Let (8, R) be a weave of D. If 4,c4, and 4,, A;¢ &, then 4,=
Az-

Proof. Suppose pe A4,—A4,. Then let B e ® satisfy pe B. Then

N
&
&

1n =Azn =1

18 a contradiction.
In the same way, if B,=B, and B,, B,¢ R, then

BI=B2.

Definition. Let (€, R) be a weave of D. (8, ®) is called normal if for every
subset X of D there exist A€ ® and Be R s.t.

either AcX or BcD-X.

Let FSP(D). Then (8, R) is called F-normal if for every X ¢ there exists 4¢&
and Be R s.t.

either AcX or BcD-X.

Definition. Let &, S P(D;) and F, S P(D,). A tensor product of F, and F.
which is denoted by &, ® F, is defined by the following.

F1QFe= ({dy, dy)|dy e FiAdze f(d) AN FreF A (f 1 F1 > Fa)) -
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Proposition. FOF) T =T (F®F)
Proposition. P(D,) ® P(D,) = P(D, X D,)
Rmeark: The element of & ®%, which is obtained from F e, & f: F;-F,

is denoted by Ff
Proposition 3. Let (8, R;) be a weave of D; for i=1,2. Define

L=9,0% and R=R1®Rz.
Then (2, R) is a wave of D=D,xD,. (2, R) is called a tensor product of (2, R,)
and (8, Rs).
Proof. Since £ X8 and R, X RS R, it suffices to show that for every
Aecf and Be R

(AnB)y=1.
Let 4 be obtained from 4,¢ @, and f;: 4, £, and B be obtained from B, ¢ ®,
and g,: B; > R,.

Let 4,nB,=(d,} and fy(d})=4, and ¢y(d)=B,; Then the proposition is
obvious since 4 NB={d;} X(4,NB,).

Definition. Let D be a non-empty set. A weave (2, ®) of D is called trivial
if (2, @) is one of the following:

a) L = {{d}|de D} and R = (D}

b) L= (D} and R = ({d}|de D} .

A trivial weave of D is normal.

Now we answer some questions of the following type: Which methods of
combining weaves preserve the property of being normal ? Which preserve the
property of being -normal, for some particular kinds of families §?. In the case
of tensor produects, this turns out to be equivalent to questions of determinateness
of Gale-Stewart games.

Proposition 4. Let (&, R;) be a weave of D; for ¢=1, 2, and (2, ®) be the
product of (£, ®,) and (£, Rs). If (2;, R;) is F;-normal for ¢=1, 2, then (2, R)
is §-normal, where =%, XFs.

Proof. Let X,CD; and X,CD, Let 4,¢%, Bie Ry, 43¢ %y, B¢ R, satisfy
the following conditions.

1) either 4, c X, or B, cD,—X,
2) aither 4, < X, or B, D,—X,
Case 1) 4,cX, & 4,2 X,.
Then 4,X4; € X;XX,.
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Case 2) B, D-X,.
B, X B, < (D,—X,)X B, < (D,— X)X D,
= DX Dy— X, XDy © D; X Dy—X;X X,
Case 3) B, C D,—X, (similar).
Proposition 5. Let (2;, ®;) be a weave of D; for 1=1, 2, and (2, &) be
(21, R1) ® (L2, Ro) -

If (2, R;) is Finormal for 4=1, 2, and F=P(D;) then (8, R) is F-normal here
%=%1®%2-

Proof. Let Xe¢@ and X be obtained from X, e, and f: X, >, There
exists 4,¢ %, and B, e R, such that either 4, X, or B,cD,—X,

Case 1) B,c D,—X,.
Take any B,e ®,
B, X B, C (D,— X)X Dy = D)X Dy— X, XDy € Dyx Dy— X
Case 2) 4,c X,.

For d, e X, there exist 4,;, €2, and By, € R, such that either 4, < f(d,) or B;, &
D,— f(d,). Let Y={d, e X,]4,, ©f(d)}. If there exists 4 €&, such that 4ACY,
then 4 and {d—» 4;|d e A) make an element of € included in X. Suppose there
exists Be ®, such that

Bc D,—Y
We define g: B - R, as follows:
g(d,) is any member of ®, if d, ¢ X,
g(dy) is B, if de X, .
Suppose (d;, d,) e BE N X. Then
dy € g(dy) = Dy— f(dy) A dye f(dy)

which is a contradiction.

Definition. Let FSP(D) and F,SP(D;) for every de D. We define
& —dlEJDg'd = (dgAf (@)NdeF Afe ng%d} .
In the definition of the sum of weaves,
T=2-U % and R=R— U Rq.
deD deD
Proposition 6. Let {D;|d e D} be mutually disjoint, (2, ®;) be an $;-normal

weave of D; and (2, ®) be an §-normal weave of D, where § = P(D). Define
(], ®) to be the sum of (24, R;)- Then (¥, #) is an F-normal weave of D, where
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F=F%F— UL and D=y D,
dEp dEE
Proof. By proposition 1, it suffices to show the §-normality of (€, ®).
Let Xe§. Then X is of the form
VP ¢
deD
where X,e$,. By the F,normality of (2;, Rs) we have

vdeD gAJGQd aBdE Rz 8.t. Angd or Bngd—Xd.
Let Y= {deD|4,<X;}. Then
348 IBeR st. ASY or B D-Y.

Case 1) AcCY.

Let 4 =dgAAd. Then 4 € & by definition of the sum and 4 < X.
Case 2) Bc D-Y.

For d¢ B we have B, = D;—X,;. Define B= |y B;. Then Be ®. Also

ngBd <_:'dleJB(Dd—X’l) - dLéB(Dd—X) sD-X.

The added condition that §=P(D) is necessary for the proof of proposition 6.
If we let

L’={{G,b}, {C,d], {G,C}}
R = {{a:d}’ {b’ c})

8 = {{04, 1.3} L= ({0s}, {1:}}
Ra= {{0a}, {14}} Ry = {{0s, 1;}}
L= {{0, L.}} 8= ({0}, {L.}}
Re= ({0}, {1.}} Ra= ({0 1a}}

Then F=+=P(D) and the sum (&, #) is not §-normal.

Remark: If (D;|de D} is mutually disjoint and D= U D, then P(D)=

deD
P(D)— y P(D;).
dep

To what extent does the infinite tensor product preserve the property of being
normal ? To answer this we convert from the language of weaves to the language
of games.

Let (8;, R;) be a normal weave of D; for t<w. Define a game G as follows:
Let X be a subset of II D,.
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Stage 0: Players I and II simultaneously choose sets A4, e &, and B, € R, Tespect-
ively.

Stage 1: Islayers I and II simultaneously choose sets 4;¢8; and B;e ®; respect-
ively.

For each ¢, let 4;NB;={d;}. We say that player I wins the game if and only if
the sequence (dy, dy, dy, -++) is in X. Otherwise, player II wins. This is called a
weave game with underlying set X.

(Remark: This weave game is a generalization of the Gale-Stewart game. A
Gale-Stewart game can be thought of as a weave game using only the trivial weave
L,=({d}|de Dy}, R;=1{D,} for stages, ¢, where palyer I is expected to choose, and
Li=(D;}, Rj={{d}|de D;} for stages, j, where player II is expected to choose.)

Let 8=2,02,0%Q: +, R=R@R1QOR:®: -+, and D=DyXDiXDpX .

Now we translate “tensor product” into game terminology: A play of the game
@ is an element of D. A finite play of the game G is an initial segment of some
play. A strategy for player I (II) in the game @ is a function o (whose domain is
the set of finite plays), such that for all (dy, ---,d,), o({dp, *++, dy)) € Lpir(Ry+1)-
(We will use these terms in connection with Gale-Stewart games also; see [1] for
definitions.) Given a strategy o, let & be the set of all plays of G that can result
from player I's using the strategy o throughout the game.

Notice that §={&|o a strategy for I in ). This is because every set 4 in &
is of the form A,¢fuf2-> where Age Q, fi: Ag— Ly, fo: Aof1 > 8, ete. So A=é,
where o is a strategy satisfying

"(A) =4,
a({dy)) =f1(do) Vdye 4,
a(<d0,' . '.9 dl)) =‘f"+1(<d0,' ) di)) V(do,' MY dt) € 14'0<f1'.""f'.>

Conversely, given any strategy o for I, Define A4, fy,---, fi+1,--+ according to the
above equations. Then &=A4y/ufzr+>,

Similarly, ®={#|7 a strategy for II in G}. (This is why we chose to make @
a simultaneous-play game rather than a Gale-Stewart game. If we’d made G a
Gale-Stewart game, this last claim would not have been true.)

We say that a game G with underlying set X is determined if and only if one
of the players has a winning strategy. This is equivalent to

Jo (strategy for I)  3r (strategy for II) &< XvscD-X

This in turn is equivalent to
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3de@ 3Be R AcXvBcD-X

Therefore, (8, ®) is F-normal, for some particular family of sets ¥, if and only if
for every X in §, the game on (¥, ®) with underlying set X is determined.

Next we reduce the problem further to that of determinateness of Gale-Stewart
games. We consider a weave game (@ and create from it an “equivalent” Gale-
Stewart game G*.

The game G*: at stage ¢, player I chooses a set 4; in &;, and then player II chooses
a set B,' in R

Again, an element (dy, dy,+++) of D is formed and player I wins if and only if
(dy, dy,+-+) e X.

Lemma 1. If player I has a winning strategy in G*, then he has a winning
strategy in G.

Proof. Player I should play G' using essentially the same strategy that he
uses to win G*.

Let o* be a winning strategy for I in G*. :

Let (dy,--- d,) be a finite play of G. Choose 4, By, 4;, By,-++, 4,, B, such
that 4;NB;={d;} for all i=1,...,n. Define o({dy,---,d,)}=0*(( Ay, By, - -, Ay B,)-
(Notice that a “finite play” of G* is an initial segment of an element in X R,
XX RyX-+- . This is the only “difficulty” in applying a strategy for I in G*
to the game G.)

Then ¢ is a winning strategy for I in G.

Lemma 2. If player IT has a winning strategy in G*, then he has a winning
strategy in G.

Proof. (Intuitive Idea): Games G and G* are essentially the same except
that player II seems to have an extra advantage in G* that he doesn’t have in
@ - that of knowing, at stage 3, what player I's move for stage ¢ will be before
having to choose his own move for stage 4. This turns out not to be an advantage
at all (because of the normality of (2;, ®;)). For instance, at stage O, we let DyI1
be the set of all d in D, that players I and II can form (jointly) as part of +*-
a winning strategy for I in @*. It turns out that 3Be @, s.t. BSDy!I. In
playing the game G, player II can simply choose B at stage O, without knowing
what player I’s choice for stage O will be.

(Details:) Let f be the function that maps the plays of G* onto the plays of G
in the expected way (i.e. f((dq, By, 41, By, ++))=(dy, dy,+ -+ ) where 4;NB;={d;} for
all i<w.) Let v* be a winning strategy for II in G*.

#* is a II-imposed subgame (see [2]) of G* in which all plays are wins for player
II. Therefore, f(#*) is a “subgame” of G in which all plays are wins for player II.
We will define a strategy = for I in @ in such a way that #< f(#*). (Note that
since f(#*) is a closed set, we only have to define = so as to make any finite play
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of # extendable to an element of f(4*).) Thus r will be a winning strategy for II
in G.
Let D,IT be the set of Oth entries of elements of

£(#%). [i.e. Dyt = (dol(3dy, dy, - - -) [(doy dy day -+ ) e (N1
Claim: 3Be Ry BC Dyl! .

If not then by normality 34 ¢ 8, ASDy—D,y!I. This would imply that there
is a move of player I in G* (that of choosing the set 4) that forces the game out
of 4*, contradicting the fact that 4* is a II-imposed subgame of G*.

So define 7(4)=B.

Now assume that @ is in its ith stage and (d,,---, d;—;) has already been
played and (hypothesis of induction) that (d,..-,d;_;) is an initial segment of
some element of f(4*).

Let D,-H(do,- .+, d;;) be the set of ith entries of those elements of f(4*) that
have (d,o-- ,_) as an initial segment. [i.e. DJK{dp, -, diy)={d;|(Ad;+1, diss,
<) [Udgy -+ dimy By @iy, Bivoy- - ) €f(3¥)}]. As before, 3Be ®; B&SD1{d,, -

di—y). Deﬁne 7({dg,++, di—1)) to be this B.

2 f(4™), so 7 is a winning strategy for Il in G. This completes the proof. .

Collecting the results of Lemmas 1 and 2, we have the following:

Lemma 3: If G* is determimed, so is G.

It is shown in [3] and [4] that any Gale-Stewart game G*, whose underlying
set X is a Borel set (as a subset of D), is determined. We therefore have, by
Lemma 3, that any weave game, whose underlying set is a Borel set, is determined.
Translating this back into the language of tensor products, we have:

Proposition 7. Let (;, ®;) be a normal weave of D; for t<w. Let

€= 20®21®22®' .

R=RQPRIDRRD -
and

D = DyXD;XDyX -

Let X be a Boreal subset of D. Then there exixt 4 € € and Be ®@ such that either
AcX or Bch-X.

There is a similar theorem for the sum of weaves, but to do this we have to
rewrite the definition of sum so that we can define the infinitely iterated sum.

Let (2, ®) be a weave of D, {D;|de D} be a family of mutually disjoint
sets, and let (2;, R;) be a weave of D; for each d in D.

For each 4 in € and each fe II 2,; let Af={e|(Ade d)[eecf(d)]}. The sum

of ({8, Rs)|deD} is & {AfIAGS/\fe II 8,;}

Now define /4 to be {(d,e)|d¢ A/\e ef(d)] Let the sum’ of {(8;, R,)|d e D}
54 —
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be §={/4]|d ¢ BAfedl'Ibﬂd}.
e
g and § are isomorphic, by the correspondance
e+ (d,e) where ecD,.

The advantage of working with &’ instead of & is that the process of sum’-ing
can be iterated infinitely. Let (2, ) be a weave of D,

{(D;,|dg€ Dy} a collection of mutually disjoint sets,
(84,, Ra,) 2a weave of Dy, for each d, ¢ Dy,

D,= U D,,,

doEDy

{Dy; Id,-.e D;} a collection of mutually disjoint sets,
(s, Ra;) a weave of D, for each d; ¢ D;,
Di+1 = U Dd,‘

D

die

We define the iterated sum of all these weaves
Foreach 4¢g, foe T &, -,
doEDo

fne I Sdm' ) define <f0:°' ) fm" '>A
dn€ Dy,
to be
(@, ay,+ -+ Y ap € ANy efi(@) Nag € fola) A\ -+ -}
Let & be {$forstu> 414 e QA(VE) [ f; edHD .0 .
1€0;
In a similar way define ® to be
{<50x"';gm"‘>BlB€ ﬂ/\(V’I;) [g,'E I Rd,‘]] .
dieD;
Proposition 8. (&, &) is a weaves.
Once again we define a game G:
P is a subset of Il D;. (@, @y,-+-) is in P if and only if aye Dy, a,¢D,,,
ase D, , etc. P is the set of plays of the game G.
Let X be a subset of P.

Stage O: Players I and II simultaneously choose sets Ae® and Be R respect-
ively. Let A N B = {d,} -

Stage ¢+1: 'Players I and II simultaneoulsy choose sets 4;; € 8;; and By, e Ry
respectively. Let A, NB;;={d;+,}.
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Other definitions for @ follow in a way similar to that for tensor product.

As in the case of tensor products we have that

§={6]c a strategy for I in @} and R={#|r a strategy for Il in G} and so
lemmas analogous to lemmas 1 and 2 for tensor products, and proposition 7, can
be proved for iterated sum. The slight advantage of the iterated sum over the
tensor product is that in the iterated sum game, at any stage in the game, the
choices available to players I and II can depend on the finite play of the game up
to that stage.

Proposition 9. Let (2;, ®;) be a normal weave of D; for =1, 2. Define 8=
2R8%, R=RQR, and D=D,xD, Let X: D, - P(D,) ie. for every dye D,
X,, is a subset of D,. Then there exist 4,f¢ 2 and B,¢e ® where

4,¢8, f: 4,58,
Bie®R, and g: Bi—> R,.

s.t.
either vd,e 4, Vd,ef(dy) (d e Xy,)
or Vd,e B, Vdyeg(d,) (d,e D,—X,,)

Proof. Define X={(d,, dy)|dse Dy;Ad;eX;,}. Then there exist A¢® and
Be R s.t. either ACX or BcD—X. Let A=A4,/ and B=B¢.

Ac X iff Vd,e D, Vdye D, ((dy, dy) € A D (dy, dy) € X)

iff Vdyed, Vd,ef(dy)(d,eXa,).
Similarly,
BC DX iff Vd,e D, VdyeD,((dy,dy) € B> (dy, d,) ¢ X)

iff Vd,eB, Vdyeg(dy)(di¢ X2,

Remark. The conclusion of this proposition is a generalization of being normal
of (2, R.), i.e. being normal is the special case of this proposition that D, con-
sists of a single point and Q=R ,={D,}.
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