
	 1	

Exercises	to	Accompany		
			Introduction	to	Functional	Programming	
			How	to	Think	Functionally	in	(Almost)	Any	Language	
			with	Barry	Burd	
	
This	list	includes	three	kinds	of	exercises:	

• Exercises	marked	General:	Complete	these	exercises	without	writing	or	reading	code	of	
any	kind,	or	explore	features	in	a	programming	language	that	you	may	not	have	seen	
before.	

• Exercises	marked	Using	pseudocode:	Complete	these	exercises	by	reading	or	writing	
simplified	syntax	that	doesn't	belong	to	any	particular	programming	language,	like	the	
syntax	that	I	use	in	the	course.	

• Exercises	marked	In	your	programming	language:	Complete	these	exercises	by	reading	
or	writing	code	in	a	programming	language	of	your	choice.	(And	don't	forget	to	test	your	
code!)	

	
There	are	exercises	for	almost	every	section	of	the	course.	For	example,	Exercises	1.1,	1.2	and	
1.3	are	for	the	first	section	(the	section	entitled	About	This	Course).	Exercises	2.1,	2.2	(and	so	
on)	are	for	the	second	section	(the	section	entitled	Solving	a	Problem	Both	Ways).	
	
Some	solutions	appear	at	the	end	of	the	list	of	exercises.	
	
If	you	have	questions,	send	email	to	functional@allmycode.com,	tweet	to	@allmycode,	or	post	
on	Facebook	to	/allmycode.	
	
Have	fun	and	learn	a	lot!	
	
1. About	This	Course	
General	

1.1. The	following	program	is	written	in	a	very	old	version	of	the	BASIC	programming	
language.	In	case	you're	wondering,	the	percent	sign	(%)	is	BASIC's	mod	operator.	So,	for	
example,	6 % 3	is	0	and	7 % 3	is	1.	
Trace	through	the	execution	of	the	program	to	determine	the	program's	output.	
GOTO	statements	are	bad,	and	this	exercise	with	GOTO	statements	is	intentionally	
annoying.	So	have	fun	with	it	but	don't	take	it	too	seriously.	

10 LET X = 5
25 PRINT X
20 GOTO 90
30 LET X = X + 8
35 PRINT X
35 IF X % 2 = 0 THEN GOTO 60
40 LET X = X * 5
45 PRINT X
50 IF X < 51 THEN GOTO 30

	 2	

60 LET X = X - 1
65 PRINT X
70 IF X % 3 = 0 THEN GOTO 30
85 END
90 LET X = X * 2
95 PRINT X
100 GOTO 40

1.2. Type	the	code	from	Exercise	1.1	into	the	interpreter	at	www.quitebasic.com	to	find	
out	if	your	proposed	output	is	correct.	

In	your	programming	language	
1.3. Obfuscated	code	is	code	that's	difficult	to	read.	There	are	good	reasons	and	bad	

reasons	for	creating	obfuscated	code.	Some	software	tools	turn	readable	code	into	
obfuscated	code	in	order	to	keep	the	code	from	being	hacked.	On	the	other	hand,	
some	obfuscated	code	is	written	for	fun	to	show	how	strange	the	code	can	be.	People	
post	examples	of	such	code	on	the	Internet.	
Search	the	Internet	for	fun	examples	of	obfuscated	code.	

	
	
2. Solving	a	Problem	Both	Ways	
Pseudocode	

2.1. Here's	a	slight	modification	of	the	credit	card	categorization	problem	(called	Problem	1	
in	the	video):	Write	imperative-style	pseudocode	to	display	the	items	in	the	Food	
category	whose	amounts	are	$10	or	more.	In	your	solution,	don't	use	the	word	AND.	
Don't	use	a	symbol	that	stands	for	the	word	AND.	

2.2. Write	functional-style	pseudocode	to	solve	the	problem	in	Exercise	2.1.	
In	your	programming	language	

2.3. Write	and	test	an	imperative-style	program	to	solve	the	credit	card	categorization	
problem	(called	Problem	1	in	the	video).	

2.4. Write	and	test	an	imperative-style	program	to	solve	the	problem	in	Exercise	2.1.	
2.5. Find	out	if	your	language	has	a	feature	like	the	filter	function.	If	it	does,	learn	how	to	

use	the	filter	function	to	solve	the	credit	card	categorization	problem.	
	
	
3. Using	Filter,	Map	and	Fold	
Pseudocode	

3.1. Rewrite	the	following	function	definitions	using	lambda	notation:	
3.1.1. f(x)	=	x	+	1	
3.1.2. f(x)	=	x	

This	is	the	identity	function	–	the	function	that	returns	whatever	you	give	it.	
3.1.3. nameOf(customer)	=	customer.name	

3.2. Evaluate	the	following	lambda	expressions:	
3.2.1. (l	x	®	6	*	x)	(21)	
3.2.2. (l	x	®	x	/	2)	((l	x	®	x	+	7)	(19))	

3.3. Evaluate	the	following	expressions	

	 3	

3.3.1. map(timesTwo,	[2,	4,	5])	
3.3.2. map(timesTwo,	[8])	
3.3.3. map(timesTwo,	[])	
3.3.4. map(addOne,	map(timesTwo,	[2,	2,	4,	–3]))	
3.3.5. map(timesTwo,	map(addOne,	[2,	2,	4,	–3]))	
3.3.6. foldFromLeft(plus,	7,	[3,	–8	9])	
3.3.7. foldFromLeft(minus,	7,	[3,	–8,	9])	
3.3.8. foldFromRight(minus,	7,	[3,	–8,	9])	
3.3.9. foldFromLeft(minus,	7,	map(timesTwo,	[3,	0,	8]))	

3.4. You're	given	a	list	of	customers.	Each	customer	has	a	name	and	an	amount.	A	
customer's	amount	is	that	customer's	outstanding	balance.	Write	imperative-style	
pseudocode	to	print	the	smallest	negative	balance.	For	example,	if	Joe's	balance	is		
–$10,	Ann's	balance	is	–$2,	and	Donna's	balance	is	$5,	print	–2.	
(Assume	that	the	list	has	at	least	one	customer	in	it,	and	that	customers'	balances	
range	between	–$1000	and	$1000.)	

3.5. You	have	a	function	(called	max)	that	finds	the	larger	of	two	numbers.	Write	functional-
style	pseudocode	to	solve	the	problem	in	Exercise	3.4.	

In	your	programming	language	
3.6. Find	out	if	your	language	has	features	like	the	map,	foldFromLeft	and	

foldFromRight	functions.	
	
	
4. Imperative	and	Functional	Programming	Languages	
General	

4.1. Microsoft	Excel	has	a	Filter	feature.	You	can	find	documentation	about	this	feature	by	
visiting	https://support.office.com/en-us/article/Filter-data-in-a-range-or-table-
01832226-31b5-4568-8806-38c37dcc180e.	Read	about	this	feature,	and	try	using	it	in	
Microsoft	Excel.	

4.2. Microsoft	Excel	has	an	Aggregate	function,	which	behaves	a	bit	like	our	foldFromLeft	
and	foldFromRight	functions.	You	can	find	documentation	about	this	function	by	
visiting	https://support.office.com/en-us/article/AGGREGATE-function-43b9278e-6aa7-
4f17-92b6-e19993fa26df.	Read	about	this	function,	and	try	using	it	in	Microsoft	Excel.	

In	your	programming	language	
4.3. Find	out	how	the	experts	classify	your	programming	language.	Is	it	imperative,	purely	

functional,	hybrid,	or	some	other	kind	of	language.	
4.4. If	your	language	supports	some	functional	features,	read	up	on	those	features.	Find	a	

few	simple	sample	programs	on	the	web	and	run	them	to	find	out	how	they	behave.	
4.5. Many	languages	can	be	extended	to	include	functional	features	that	aren't	officially	

part	of	the	language.	Groups	of	developers	create	tools	enabling	you	to	use	these	
additional	functional	features.	Find	out	if	your	programming	language	has	such	
extensions.		

	
	
	

	 4	

5. Pure	Functions	
Pseudocode	

5.1. Which	of	these	pseudocode	functions	are	pure?	Which	aren't	pure?	Why?	
5.1.1. f(x)	=	x	+	x	+	x	
5.1.2. 	

f(x) {
 x = x + 7
 return x
}

5.1.3. f(x)	=	x	+	current_day_of_the_month	
where	current_day_of_the_month	is	a	number	from	1	to	31	

5.1.4. 	
f(x) {
 integer y = 3
 return x + y
}

5.1.5. 	
f(x) {
 integer y = random()
 return x + y - y
}

5.1.6. length(the_string_s)	=	number	of	characters	in	the_string_s	
5.1.7. 	

post(message, URL) {
 add the message to the message board at the URL
}

5.2. Which	of	these	expressions	are	referentially	transparent?	Which	aren't?	Why?	
5.2.1. inputFromKeyboard(x)	

If	you	execute	y = inputFromKeyboard(x),	and	the	user	types	7,	
then	the	value	of	y	becomes	7.	

5.2.2. 7	+	6	
5.2.3. f(x)	=	x	+	current_day_of_the_month	

where	current_day_of_the_month	is	a	number	from	1	to	31	
5.3. Revisit	your	solution	to	Problem	3.2	to	make	sure	that	nothing	in	your	solution	is	

mutable.	
	
	
6. Some	Benefits	of	Pure	Functions	
Pseudocode	

6.1. Use	pseudocode	to	write	tests	for	the	following	two	functions.	Identify	the	setup	
step(s)	required	to	test	each	function.	

	
6.1.1. 	

mortgage(principle, ratePercent, numYears) {

	 5	

 rate = ratePercent / 100
 numPayments = numYears * 12
 effectiveAnnualRate = rate / 12
 payment = principal * (effectiveAnnualRate
 / (1 - (1 + effectiveAnnualRate)^(-numPayments))))
}

In	case	you	care,	my	^	symbol	means	"to	the	power	of."	Also,	the	monthly	
payment	on	a	30	year,	$100000.00	mortgage	with	5.25%	interest	is	$552.20.	
	

6.1.2. 	
	mortgage(principle, numYears) {
 rate = currentRatePercent / 100
 numPayments = numYears * 12
 effectiveAnnualRate = rate / 12
 payment = principal * (effectiveAnnualRate
 / (1 - (1 + effectiveAnnualRate)^(-numPayments))))
}

The	function	in	this	exercise	is	almost	the	same	as	the	function	in	Exercise	6.1.1.	
The	only	difference	is	that	this	exercise's	function	uses	a	variable	
(currentRatePercent)	whose	value	is	set	outside	of	the	mortgage	function	
and	can	be	modified	outside	of	the	mortgage	function.		
	

6.2. The	mortgage	function	in	Exercise	6.1.1	might	run	correctly	when	you	test	it	with	
parameters	100000.00,	5.25,	30.	Does	this	mean	that	the	function	will	run	correctly	
whenever	anyone	calls	the	function	with	parameters	100000.00,	5.25,	30?		

6.3. The	mortgage	function	in	Exercise	6.1.2	might	run	correctly	when	you	test	it	with	
parameters	100000.00,	30.	Does	this	mean	that	the	function	will	run	correctly	
whenever	anyone	calls	the	function	with	parameters	100000.00,	30?	

6.4. Define	factorial(n) = 1*2*3*...*n.	Here's	a	pseudocode	program	to	repeatedly	
calculate	factorial(n)	and	count	the	number	of	multiplication	operations	done	
during	the	calculation:	

	
loop
 input n
 result = 1
 count = 0
 for i from 2 to n do
 result = result * i
 count = count + 1
 print result
 print count

	 6	

The	factorial	function	is	pure	so	it	can	be	memoized.	Use	memoization	to	make	values	
of	count	smaller	for	values	of	n	less	than	or	equal	to	100.	

In	your	programming	language	

6.5. Write	a	program	that	inputs	an	integer	that's	less	than	or	equal	to	1000	(call	it	n)	and	
then	uses	a	loop	to	add	up	the	integers	1	to	n.	The	program	displays	the	resulting	sum.	

6.6. Modify	the	program	of	Exercise	6.4	so	that	the	program	repeatedly	inputs	a	new	value	
for	n	and	then	displays	the	sum	of	the	integers	1	to	n.	The	program	stops	repeating	
when	the	user	enters	0	for	n.	
To	solve	this	problem,	create	an	array	of	size	1000	(call	it	the	totals	array).	Put	1	into	
totals[1].	Then	put	the	sum	of	1	and	2	into	totals[2].	Then	put	the	sum	of	1,	2	
and	3	into	totals[3].	And	so	on.	What	if	the	user	inputs	950	for	n	and	then	765	for	
n?	Don't	recalculate	the	sum	of	the	numbers	1	to	765.	In	one	step,	get	that	sum	from	
the	totals	array.		

	
	
7. Avoiding	Race	Conditions	
General	

7.1. Ann's	parents,	Bob	and	Carol,	have	a	joint	bank	account.	Bob	visits	an	ATM	machine.	He	
checks	his	balance,	which	is	$300.	So	Bob	requests	a	withdrawal	of	$100.	Then	the	
machine's	screen	displays	a	message	saying	that	Bob	can't	withdraw	the	money.	What	
went	wrong?	

7.2. Describe	a	scenario	in	which	the	credit	card	total	problem	(called	Problem	2	in	the	
video)	can	suffer	from	race	conditions.	

Pseudocode	
7.3. What	outputs	may	result	from	running	the	following	code?	
	

x = 0
three times do {
 simultaneously do {
 x = x + 1
 }
 and
 {
 x = x + 1
 }
}
print x

	
	
	
	
	
	

	 7	

8. Efficient	Parameter	Passing	
General	

8.1. In	an	old	version	of	the	FORTRAN	programming	language,	any	numeric	literals	that	
were	passed	as	parameters	were	stored	as	variables	with	values	before	they	were	
passed.	What	unwanted	consequence	can	this	have	for	parameter	passing?	

In	your	programming	language	
8.2. There	are	many	ways	for	languages	to	implement	parameter	passing.	You've	probably	

used	parameter	passing	in	an	imperative	language,	and	you	probably	know	the	rules	
that	govern	parameter	passing	in	your	language.	But	do	you	know	how	parameter	
passing	works	under	the	hood?	Research	this	question	for	the	language	of	your	choice.	

8.3. Are	there	different	options	for	passing	parameters	in	your	programming	language?	If	
so,	which	of	them	allow	you	to	modify	the	values	of	the	parameters	in	the	function	
call?	Which	don't?	

	
	
9. Lazy	Evaluation	
Pseudocode	

9.1. In	each	part	of	this	problem,	evaluate	the	expressions	lazily,	and	then	eagerly.	In	each	
case,	are	the	results	different?	
9.1.1. In	this	problem,	a	call	to	the	print	function	returns	the	number	of	values	that	

were	successfully	printed.	For	example,	print(x, y)	might	return	the	number	2.	
	

x = 7
if x < 5 & (print(x) = 1)
 print("x is", x)

	
9.1.2. 			

if theArray has an element with index 10 & theArray[10] = 0
 print("OK")

9.1.3. In	this	problem,	++x	behaves	as	both	an	instruction	and	an	expression.	As	an	
instruction,	++x	adds	1	to	the	value	of	x.	As	an	expression,	the	value	of	++x	is	the	
newly	obtained	value	of	x.	For	example,	the	code	

	
x = 7
print(++x)
print(x)
	

displays	the	numbers	8 8.	With	that	in	mind,	evaluate	the	following	code	both	
lazily	and	eagerly.	
	
x = 18
if ++x > 19 & print(++x)
 print("x is", x)

	 8	

print(x)
	

9.1.4. In	this	problem,	x++	is	the	same	as	in	Problem	9.1.3.	
	

x = 18
if ++x > 18 or print(++x)
 print("x is",x)
print(x)

9.1.5. x	=	(if	y	notEqualTo	0	then	(x	/	y)	else	x	+	1)		
9.1.6. firstElementOf([0,	3.	6.	9,	12])	
9.1.7. firstElementOf([0,	3,	6,	9,	12,	...])		
9.1.8. sumOfTheNumbersIn([0,	3,	6,	9,	12,	...])	
	
	

10. Introduction	to	Higher-Order	Functions	
General	

10.1. Let	f(x)	=	x	+	7,	let	g(x)	=	x2	and	let	h(x)	=	1/x.	
10.1.1. Find	the	value	of	f∘g(5).	
10.1.2. Write	an	arithmetic	expression	for	the	function	f∘g.	
10.1.3. Find	the	value	of	g∘f(5).	
10.1.4. Write	an	arithmetic	expression	for	the	function	g∘f.	
10.1.5. Find	the	value	of	h∘h(5).	
10.1.6. Find	the	value	of	g∘f∘h(5).	
10.1.7. Write	an	arithmetic	expression	for	the	function	g∘f∘h.	

10.2. In	the	video,	I	describe	function	composition,	denoted	by	the	∘	symbol.	Is	
composition	a	higher-order	function?	Why,	or	why	not?	

10.3. If	you've	taken	calculus,	you've	seen	the	derivative,	denoted	by	d/dx.	Explain	
why	the	derivative	is	a	higher-order	function.	

10.4. Symbolic	logic	has	two	functions	named	thereExists	and	forAll.	Here	are	
examples	of	the	use	of	these	two	functions:	

	
thereExists(even,	[1,	3,	5])	is	false		
				because	there	are	no	even	numbers	in	the	list	[1,	3,	5]	
thereExists(even,	[1,	2,	5])	is	true		
				because	there's	an	even	number	in	the	list	[1,	2,	5]	
forAll(even,	[1,	2,	5])	is	false		
				because	not	all	numbers	in	the	list	[1,	2,	5]	are	even	
forAll(even,	[2,	6,	10])	is	true	
				because	all	numbers	in	the	list	[1,	2,	5]	are	even	
	
Are	thereExists	and	forAll	higher-order	functions?	Why	or	why	not?	

	
	

	 9	

11. Currying	
General	

11.1. In	the	video,	I	use	the	notation		
	

filter : function, list → list		
	

to	describe	the	parameters	and	result	time	of	the	filter	function.	Use	similar	
notation	to	describe	each	of	the	following	functions:	

11.1.1. Describe	the	function	f	in	Exercise	10.1.	
11.1.2. Describe	the	function	f∘g	in	Exercise	10.1.1	
11.1.3. Describe	the	result	of	partially	applying	2	to	the	first	argument	in	the	function	

add(x, y) = x + y.	
11.1.4. Describe	composition	(denoted	by	the	∘	symbol).	
11.1.5. Describe	the	applyNTimes	function	which	applies	a	function	n	times.	For	

example,		
	

 applyNTimes(x + 1, 3) = ((x + 1) + 1) + 1
 applyNTimes(x * 2, 4) = (((x * 2) * 2) * 2) * 2

11.1.6. Describe	the	addF	function,	which	takes	two	functions,	f and	g,	and	returns	
another	function	that	sums	up	the	return	values	from	f	and	g.	For	example,	

	
 addF(x2, 2*x) = x2 + 2*x	
	

11.1.7. In	the	video,	you	start	with	add	and,	from	it,	you	create	curryAdd.	What	are	
you	doing	when	you	go	from	add	to	curryAdd?	

	
	
12. Closures	
Pseudocode	

12.1. What's	the	output	of	the	following	code?	
	
makeNewFunction(factor) {
 size = 1
 f() = multiply	size by factor	and	return	the	new	size	value
 return f
}

increaseA = makeNewFunction(5)
print(increaseA())
print(increaseA())
increaseB = makeNewFunction(10)
print(increaseB())
print(increaseB())

	 10	

print(increaseA())
	

12.2. What's	the	output	of	the	following	code?	
	

createGreeting(interjection) {
 f(name) = interjection"," name"!"
 return f
}

formalGreeting = createGreeting("Hello")
casualGreeting = createGreeting("Hi")

print (formalGreeting("Mr. Williams"))
print (formalGreeting("Ms. Polywether"))
print (casualGreeting("Joe"))

12.3. What's	the	output	of	the	following	code?	
	
delayDisplay(n) {
 f(message) = wait	n	seconds	and	then	display	message
}
g = delayDisplay(1)
h = delayDisplay(5)
h("Goodbye")
g("Hello")	

	
	
13. Introduction	to	Lists	
Pseudocode	

13.1. Find head(tail([6,9,12,8]))	
13.2. Find tail(tail(tail([6,9,12,8])))	
13.3. Find construct(10,tail([21,15]))	
13.4. True	or	false? tail([18,8]) is	equal	to 8	
13.5. Find concatenate(concatenate([1,3],[1,8]),[0,0])	
13.6. With x = [3,2,19],	find construct(head(x),tail(x))	

	
	
14. Recursion	
and	
15. More	Recursion	Examples	
Pseudocode	

15.1. Show	how	to	use	the	reverse	function	from	the	video	to	find	out	if	a	list	of	
characters	is	a	palindrome.	

15.2. Use	the	reverse	function	from	the	video	to	define	a	last	function.	When	
applied	to	a	list,	the	last	function	returns	the	last	value	in	the	list.	

	 11	

	
last([1,7,5]) = 5
last([2]) = 2
	

15.3. Use	the	last	function	in	Exercise	15.2	to	write	recursive	code	for	a	function	that	
creates	a	list	of	factorials	up	to	and	including	the	number	given	to	it.	For	example,	

	
factorials[1] = 1
factorials[2] = [1,2]
factorials[3] = [1,2,6]
factorials[4] = [1,2,6,24]
	

15.4. Write	recursive	code	for	a	function	that	sums	the	numbers	in	a	list.	For	example,		
	

sum([1,3,5])=9
sum([]) = 0

	
15.5. A	function	named	firstNFrom	takes	a	list	and	an	integer	n,	and	returns	the	first	

n	values	from	the	list.	For	example,		
	

firstNFrom([9, 6, 3, 4], 2) = [9, 6]
firstNFrom([9, 6, 3, 4], 1) = [9]

Write	recursive	code	for	the	firstNFrom	function.	(Assume	that	n	is	always	greater	
than	0	and	less	than	or	equal	to	the	length	of	the	list.)	

15.6. A	function	named	alternates	takes	a	list	and	returns	a	list	containing	the	
alternate	values	from	the	original	list.	For	example,	

	
alternates([2,19,81,4]) = [2,81]
alternates([1,2,7,5,9]) = [1,7,9]
alternates([8]) = [8]
alternates([]) = []

Write	recursive	code	for	the	alternates	function.	
	
	
16. Computations	that	Might	Fail	
Pseudocode	

16.1. Find	the	value	of	sqrtMaybe(x-10) >>= minus4Maybe >>=
reciprocalMaybe >>= plus13Maybe	when	x	=	10.	

16.2. Find	the	value	of	sqrtMaybe(x-1) >>= minus4Maybe >>=
reciprocalMaybe >>= plus13Maybe	when	x	=	17.	

16.3. Find	the	value	of	sqrtMaybe(x-10) >>= minus4Maybe >>=
reciprocalMaybe >>= plus13Maybe	when	x	=	9.	

	 12	

16.4. Find	the	value	of	reciprocalMaybe(x) >>= sqrtMaybe	when	x	=	1.	
16.5. Find	the	value	of	reciprocalMaybe(x) >>= sqrtMaybe	when	x	=	0.	
16.6. The	defintionMaybe	function	takes	a	string	of	characters	(such	as	a	word)	and	

returns	the	dictionary	definition	of	that	string	of	characters,	if	there	is	one.	The	
lengthMaybe	function	takes	a	string	of	characters	(such	as	a	word	or	group	of	words)	
and	returns	the	number	of	characters	in	the	string,	if	there	is	one.	(Count	the	blank	
spaces	and	punctuation	in	the	string.)	
16.6.1. The	definition	of	house	is	A	building	whose	purpose	is	to	regularly	shelter	the	

same	person	or	people.	Find	the	value	of	definitionMaybe(x) >>=
lengthMaybe	when	x	=	"house".		

16.6.2. The	non-word	bxbutw	isn't	a	real	word	so	it	doesn't	have	a	definition.	Find	the	
value	of	definitionMaybe(x) >>= lengthMaybe	when	x	=	"bxbutw".		

16.7. Describe	the	parameter	types,	return	type,	and	rule	for	applying	the	bind	
function	in	Exercise	16.6.	

	
	
17. More	Monads	
Pseudocode	

17.1. Using	the	functions	defined	in	the	video,	define	a	function	whose	parameter	is	a	
person	and	whose	result	is	a	list	of	the	person's	great	aunts	and	uncles.	

17.2. Ann's	small	business	has	3	employees.	A	particular	employee	may	or	may	not	
have	clients.	Describe	the	functions	for	finding	all	the	clients	in	Ann's	business.	

17.3. It's	Parents'	Appreciation	Day	for	the	employees	of	Ann's	small	business.	(See	
Exercise	17.2.)	Define	a	function	to	create	a	list	of	parents	to	invite	to	the	Appreciation	
Day	party.	(Don't	bother	inviting	Ann's	parents.	They're	no	fun!)	

17.4. If	you	try	to	perform	a	computation,	and	the	computation	fails,	the	word	
Nothing	in	the	output	with	no	other	explanation	might	be	a	bit	frustrating.	To	fix	this,	
imagine	a	new	kind	of	monad	that	I	call	the	MaybeAFloatWithMessage	monad.	Like	
the	Maybe	monad	from	the	video,	the	MaybeAFloatWithMessage	monad	has	one	of	
two	things	in	it:	

	
• If	the	computation	succeeds,	the	monad	contains	Just	a	value.	
• If	the	computation	fails,	the	monad	contains	ErrorBecauseOf	value.	

	
For	example,	if	you	try	to	divide	by	2,	you	get	Just 1/2.	But	if	you	try	to	divide	by	0,	
you	get	ErrorBecauseOf 0.	The	0	in	the	result	might	not	be	very	informative,	but	it's	
probably	better	than	nothing.	
Describe	the	details	of	the	MaybeAFloatWithMessage	monad.	

	
	
	
	
	
	

	 13	

Some	Solutions	
	
1. About	This	Course	

1.1. The	output	is	5	10	50	58	57	65	325	324	332	331	
	
2. Solving	a	Problem	Both	Ways	

2.1. 	
for each purchase in purchasesList
 if purchase.category == Food
 if purchase.amount >= 10
 print purchase

2.2. 	
hasCategoryFood(purchase) = purchase.category == Food
tenOrMore(purchase) = purchase.amount >= 10
print(filter(tenOrMore,filter(hasCategoryFood,purchasesList)))

	
3. Using	Filter,	Map,	and	Fold	

3.1. Rewrite	the	following	function	definitions	using	lambda	notation:	
3.1.1. l	x	®	x	+	1	
3.1.2. l	x	®	x		
3.1.3. l	customer	®	customer.name	

3.2. Evaluate	the	following	lambda	expressions:	
3.2.1. (l	x	®	6	*	x)	(21)	=	6	*	21	=	126	
3.2.2. (l	x	®	x	/	2)	((l	x	®	x	+	7)	(19))	=	(l	x	®	x	/	2)	(19	+	7)	=	(l	x	®	x	/	2)	(26)	=	13	

3.3. Evaluate	the	following	expressions	
3.3.1. map(timesTwo,	[2,	4,	5])	=	[4,	8,	10]	
3.3.2. map(timesTwo,	[8])	=	[16]	
3.3.3. map(timesTwo,	[])	=	[]	
3.3.4. map(addOne,	map(timesTwo,	[2,	2,	4,	–3]))	=	

map(addOne,	[4,	4,	8,	–6])	=		
[5,	5,	9,	–5]	

3.3.5. map(timesTwo,	map(addOne,	[2,	2,	4,	–3]))	
map(timesTwo,	[3,	3,	5,	–2])	=		
[6,	6,	10,	–4]	

3.3.6. foldFromLeft(plus,	7,	[3,	–8	9])	=	7	+	3	+	(–8)	+	9	=	11	
3.3.7. foldFromLeft(minus,	7,	[3,	–8,	9])	=	((7	–	3)	–	(–8))	–	9	=	3	
3.3.8. foldFromRight(minus,	7,	[3,	–8,	9])	=	3	–	((–8)	–	(9	–	7))	=	13	
3.3.9. foldFromLeft(minus,	7,	map(timesTwo,	[3,	0,	8]))	=	

foldFromLeft(minus,	7,	[6,	0,	16])	=	((7	–	6)	–	0)	–	16	=	–15	
3.4. 	

smallestNegativeBalance = -1000
for each customer in customersList
 if customer.balance < 0
 if customer.balance > smallestNegativeBalance

	 14	

 smallestNegativeBalance = customer.balance
print smallestNegativeBalance

3.5. 	
getBalance(customer) = customer.balance
isNegative(number) = number < 0
balancesList = map(getBalance, customersList)
negBalancesList = filter(isNegative, balancesList)
smallestNegBal = foldFromLeft(max, -1000, negBalancesList)
print(smallestNegBal)

Without	naming	so	many	intermediate	functions:	
getBalance(customer) = customer.balance
isNegative(number) = number < 0
print(foldFromLeft(max, -1000,
 filter(isNegative, map(getBalance, customersList))))

	
Without	naming	any	intermediate	functions:	
print(foldFromLeft(max, -1000,
 filter(l	number -> number < 0,
 map(l	customer -> customer.balance , customersList))))

1. invisible	line	
2. invisible	line	
3. invisible	line	
4. invisible	line	

5. Pure	Functions	
5.1. 		

5.1.1. This	function	is	pure	because	it	doesn't	use	any	value	other	than	its	parameter	x,	
and	it	doesn't	modify	any	value(s)	declared	outside	of	itself.	

5.1.2. The	purity	or	impurity	of	this	function	depends	on	the	way	the	programming	
language	handles	parameters.	In	some	languages,	modifying	a	parameter's	value	
has	no	effect	on	the	parameter	in	the	calling	code.	In	such	a	language,	the	
following	code	would	display	the	value	10	and	the	function	would	be	pure.	

	
x = 10
y = f(x)
print x

	
In	other	languages,	modifying	a	parameter's	value	changes	the	parameter	in	the	
calling	code.	In	such	a	language,	the	same	code	would	display	the	value	17	and	the	
function	would	be	impure.	

5.1.3. This	function	is	impure	because	it	uses	a	number	that	it	obtains	from	the	system	
clock,	and	the	system	clock	isn't	internal	to	the	function.	

5.1.4. This	function	is	pure.	It	doesn't	use	any	information	that	comes	from	outside	of	
the	function.	It	defines	an	additional	variable	y	but	that	variable	is	fully	contained	
inside	the	function.	This	function	is	equivalent	to	the	x + 3	function.	

	 15	

5.1.5. This	function	is	impure.	The	function's	return	result	doesn't	depend	on	the	value	
obtained	by	calling	random()	so	in	that	sense,	the	function	doesn't	really	use	an	
outside	value.	But	a	subsequent	call	to	random()	(after	exiting	a	call	to	f(x))	will	
be	different	because	one	call	to	random()	has	been	"used	up"	by	the	call	to	f(x).	
So,	in	a	subtle	sense,	this	function	changes	something	external	to	it.	So	this	
function	is	impure.	

5.1.6. This	function	is	pure.	It	doesn't	change	anything	outside	of	itself,	and	it's	return	
result	depends	only	on	the	input	parameter	(the_string_s).	

5.1.7. This	function	is	impure.	Its	execution	changes	whatever	website	the	URL	points	
to.	

5.2. 		
5.2.1. This	expression	is	referentially	opaque	(the	opposite	of	referentially	

transparent).	If	you	call	inputFromKeyboard(x)	twice,	the	value	of	
inputFromKeyboard(x)	might	be	7	the	first	time	and	123897	the	second	time.	

5.2.2. This	expression	is	referentially	transparent.	The	expression	7 + 6	means	13,	no	
matter	where	it	appears	in	a	program.	

5.2.3. This	expression	is	referentially	opaque	(the	opposite	of	referentially	
transparent).	If	you	call	f(x)	twice,	the	value	of	f(x)	might	be	7	the	first	time	and	
31	the	second	time.	

5.3. Here's	a	copy	of	one	of	my	solutions	to	Problem	3.2:	
	

getBalance(customer) = customer.balance
isNegative(number) = number < 0
balancesList = map(getBalance, customersList)
negBalancesList = filter(isNegative, balancesList)
smallestNegBal = foldFromLeft(max, -1000, negBalancesList)
print(smallestNegBal)

In	this	solution,	notice	that	none	of	the	program's	variables	(balancesList,	
negBalancesList,	smallestNegBal)	have	values	that	vary.	You	don't	have	to	think	
of	the	expression		
	
balancesList = map(getBalance, customersList)
	
as	assigning	a	value	to	balancesList.	Instead,	you	can	think	of	it	as	the	definition	of	
balancesList.	
	
	

6. Some	Benefits	of	Pure	Functions	
6.1. 	Testing	functions:	

6.1.1. This	function	is	pure	so	the	test	requires	no	setup.	
	

if mortgage(100000.00, 5.25, 30) = 552.20
 return "Passed"

	 16	

else
 return "Failed"

6.1.2. This	function	isn't	pure	so,	before	the	test,	you	have	to	set	up	the	value	of	
currentRatePercent.	

	
currentRatePercent = 5.25
if mortgage(100000.00, 30) = 552.20
 return "Passed"
else
 return "Failed"

In	this	example,	the	setup	involves	only	one	statement.	The	setup	for	a	function	
in	a	real-life	application	typically	involves	many	more	statements.

6.2. The	function	in	Exercise	6.1.1	is	pure,	so	it	always	yields	the	same	result	when	it	runs	
with	parameters	100000.00,	5.25,	30.	(I'm	ignoring	things	like	differences	in	the	way	
computers	perform	arithmetic,	or	people	tripping	over	power	cords	while	the	function	
executes.)	So	if	the	function	passes	your	test	with	parameters	100000.00,	5.25,	30,	
the	program	is	guaranteed	to	run	correctly	with	those	parameters.	

6.3. The	function	in	Exercise	6.1.2	isn't	pure	so	it	doesn't	always	yeild	the	same	result	when	
it	runs	with	parameters	100000.00,	30.	The	function	might	be	correct	when	the	
currentRatePercent	is	5.25,	but	not	when	the	currentRatePercent	is	6.00.	

6.4. 			
largestKnownFactorial = 1
for n from 1 to 100 do
 knownFactorials[n] = 1
loop
 input n
 count = 0
 if n > largestKnownFactorial
 for i from largestKnownFactorial + 1 to n
 knownFactorials[i] = knownFactorials[i - 1] * i
 count = count + 1
 largestKnownFactorial = n
 print knownFactorials[n]
 print count

Here's	a	Java	program	to	implement	the	pseudocode:	
	

import java.math.BigInteger;
import java.util.Scanner;

public class Main {
 Scanner keyboard = new Scanner(System.in);

	 17	

 public static void main(String[] args) {
 new Main();
 }

 Main() {
 int n;
 BigInteger[] knownFactorials = new BigInteger[101];
 int largestKnownFactorial = 1;
 for (n = 1; n <= 100; n++) {
 knownFactorials[n] = new BigInteger("1");
 }

 for (;;) {
 System.out.print("n: ");
 n = keyboard.nextInt();
 BigInteger result = new BigInteger("1");
 int count = 0;
 for (int i = 2; i <= n; i++) {
 result = result.multiply(
 new BigInteger(Integer.toString(i)));
 count++;
 }
 System.out.println("Without memoization:::Result: "
 + result + " Count: " + count);

 count = 0;
 if (n > largestKnownFactorial) {
 for (int i = largestKnownFactorial
 + 1; i <= n; i++) {
 knownFactorials[i] = knownFactorials[i - 1]
 .multiply(
 new BigInteger(Integer.toString(i)));
 count++;
 }
 largestKnownFactorial = n;
 }
 System.out.println("With memoization:::Result: "
 + knownFactorials[n] + " Count: " + count);
 }
 }
}

	
7. Avoiding	Race	Conditions	

	 18	

7.1. Bob	is	a	victim	of	a	race	condition.	While	Bob	was	preparing	to	request	$100,	Carol	was	
withdrawing	money	from	the	same	account	at	a	different	ATM	machine.	By	the	time	
Bob	completed	his	request,	there	wasn't	enough	money	in	the	account	to	cover	Bob's	
$100	withdrawal.	

7.2. Divide	the	Food	purchases	into	two	threads	(perhaps	two	cores	on	a	multi-core	
processor).	Thread	A	totals	up	half	of	the	Food	purchases	while	Thread	B	totals	up	the	
other	half.	The	grand	total	is	maintained	in	a	central	location	that's	updated	by	both	
Thread	A	and	Thread	B.	In	the	end,	the	grand	total	is	incorrect.		
In	the	functional	version	of	the	problem,	there's	no	total	variable,	only	a	sum	or	fold	
expression.	So	the	code	doesn't	lend	itself	to	the	updating	of	mutable	variables.	

7.3. The	variable	x	is	mutable	and	there	are	two	simultaneous	threads	(call	them	Thread	A	
and	Thread	B).	In	a	scenario	that	suffers	from	no	race	conditions,	Thread	A	executes	all	
of	its	statements	and	then	Thread	B	executes	all	of	its	statements.	In	this	scenario,	the	
final	value	of	x	is	6.	
In	a	scenario	that	suffers	the	most	from	race	conditions,	the	following	happens:	
	 Thread	A	gets	the	value	of	x,	which	is	0.	
	 Thread	B	gets	the	value	of	x,	which	is	still	0.	
	 Thread	A	adds	1	to	0	and	assigns	1	to	x.	
	 Thread	B	adds	1	to	0	and	assigns	1	to	x.	
	 Thread	A	gets	the	value	of	x,	which	is	1.	
	 Thread	B	gets	the	value	of	x,	which	is	still	1.	
	 Thread	A	adds	1	to	1	and	assigns	2	to	x.	
	 Thread	B	adds	1	to	1	and	assigns	2	to	x.	
	 Thread	A	gets	the	value	of	x,	which	is	2.	
	 Thread	B	gets	the	value	of	x,	which	is	still	2.	
	 Thread	A	adds	1	to	2	and	assigns	3	to	x.	
	 Thread	B	adds	1	to	2	and	assigns	3	to	x.

The	program	prints	3.	
	

8. Efficient	Parameter	Passing	
8.1. Consider	the	following	pseudocode:	
	

f(2)
print 2
print 2 + 2

f(x) {
 x = x + 1
}

In	an	old	version	of	FORTRAN,	the	output	of	this	code	(written	in	FORTRAN	syntax)	
would	be	3 6,	not	2 4.	

9. Lazy	Evaluation	

	 19	

9.1.1. With	lazy	evaluation,	the	code	doesn't	execute	(print(x) = 1)	because,	with	
x	not	less	than	5,	the	if	condition	cannot	possibly	be	true.	Because	the	entire	if	
condition	is	false,	so	the	code	doesn't	print	anything.		
With	eager	evaluation,	the	code	evaluates	both	x < 5	and	(print(x) = 1).	So	
the	code	prints	the	value	of	x	(which	is	7).	Because	the	test	still	makes	the	if	
statement's	condition	false,	the	code	doesn't	display	x is 7.	
Note:	In	an	extreme,	counterproductive	version	of	eager	evaluation,	the	code	
would	evaluate	the	print("x is", x)	inside	the	body	of	the	if	statement	
even	though	the	if	statement's	condition	is	false,	and	thus	display	x is 7.	

9.1.2. Assume	that	theArray	has	only	4	elements,	theArray[0],	theArray[1],	
theArray[2],	and	theArray[3].	
With	lazy	evaluation,	the	code	never	performs	the	test	theArray[10] = 0	and	
the	call	to	print	isn't	executed.		
With	eager	evaluation,	the	code	performs	the	test	theArray[10] = 0	even	
though	the	outcome	of	that	test	has	no	effect	on	the	value	of	the	if	statement's	
condition.	In	some	languages,	the	request	for	the	value	theArray[10]	overruns	
the	space	allocated	to	the	array	(which	isn't	good).	In	other	languages,	the	request	
for	theArray[10]	generates	an	error.	

9.1.3. The	expression	++x > 19	adds	1	to	x,	making	the	value	of	x	be	19.	So	that	++x
> 19	expression	is	false.		
With	lazy	evaluation,	the	code	doesn't	bother	to	execute	print(++x).	And	
because	it's	inside	the	body	of	the	if	statement,	the	code	doesn't	execute	
print("x is", x).	So	the	only	printing	the	code	does	is	the	final	print(x),	
and	the	entire	output	is	the	number	19.	
With	eager	evaluation,	the	code	executes	print(++x).	Execution	of	that	function	
call	outputs	the	value	20.	Then	the	execution	of	the	final	print(x)	outputs	20	a	
second	time.	

9.1.4. The	evaluation	of	the	expression	++x > 18	sets	the	value	of	x	to	19.	So	++x >
18	is	true.	That's	enough	to	make	the	entire	if	condition	be	true	no	matter	what	
comes	after	the	word	or.		So	there's	no	need	to	evaluate	print(++x).	
With	lazy	evaluation,	the	code	doesn't	evaluate	print(++x),	so	the	call	
print("x is",x)	displays	x is 19,	and	the	final	print(x)	call	displays	19	
again.	So,	overall,	the	output	of	the	code	is	x is 19 19.	
With	eager	evaluation,	the	code	evaluates	print(++x)	even	though	that	
evaluation	doesn't	change	the	value	of	the	entire	if	statement	condition.	
Evaluation	of	print(++x)	changes	the	value	of	x	to	20.	and	prints	20.	Then	the	
code	executes	the	other	two	print	statements.	So,	overall	the	output	of	the	code	
is	20 x is 20 20.	

9.1.5. Assume	that	y	is	equal	to	0.	
With	lazy	evaluation,	the	code	ignores	the	then (x /y)	part	and	goes	straight	to	
the	else x	part.	So	the	overall	effect	is	like	executing	x = x + 1.	
With	eager	evaluation,	the	code	doesn't	ignore	the	then (x /y)	part	and	divides	
x	by	0,	which	isn't	a	good	thing	to	do.	In	some	languages,	this	generates	an	
arithmetic	error	and	the	program	crashes.	

	 20	

9.1.6. With	both	lazy	and	eager	evaluation,	the	value	of	this	expression	is	0.	
9.1.7. With	lazy	evaluation,	the	code	figures	out	what	firstElementOf	means	and	

looks	for	only	the	first	element	of	[0, 3, 6, 9, 12, ...]	which	is	0.	
With	eager	evaluation,	the	code	tries	to	find	all	elements	of	[0, 3, 6, 9, 12,
...]		and	that	takes	forever.	So	the	code	never	gets	to	look	for	the	first	element	
of	the	list.	

9.1.8. With	both	lazy	and	eager	evaluation,	the	code	has	to	find	all	numbers	in	the	list	
[0, 3, 6, 9, 12, ...].	That	takes	forever,	so	in	both	cases,	the	code	never	
comes	up	with	an	answer.	

	
10. Introduction	to	Higher-Order	Functions	

10.1. 	
10.1.1. f∘g(5)	=	f(g(5))	=	f(25)	=	32	
10.1.2. f∘g(x)	=	f(x2)	=	x2	+	7	
10.1.3. g∘f(5)	=	g(12)	=	144	
10.1.4. g∘f(x)	=	g(x	+	7)	=	(x	+	7)2		
10.1.5. h∘h(5)	=	h(1/5)	=	1/(1/5)	=	5	
10.1.6. g∘f∘h(5)	=	g(f(1/5))	=	g(1/5	+	7)	=	(1/5	+	7)2		
10.1.7. g∘f∘h(x)	=	g(f(h(x)))	=	g(f(1/x))	=	g(1/x	+	7)	=	(1/x	+	7)2		

10.2. Composition	is	a	higher-order	function	because	composition	take	two	functions	
(as	its	parameters)	and	returns	a	third	function	as	its	result.	For	example,	in	Exercise	
10.1.2,	composition	takes	the	functions	x2	and	x	+	7	and	creates	the	function	x2	+	7.	

10.3. The	derivative	takes	a	function	as	its	parameter	and	returns	another	function	as	
its	result.	For	example,	d/dx	takes	the	function	x2	and	returns	the	function	2x	as	its	
result.	

10.4. The	function	thereExists	takes,	as	its	parameters	a	function	(such	as	even)	and	a	
list	(such	as	[1,	3,	5]).	The	first	parameter,	even,	is	a	function	because	even	take	a	
number	(such	as	1)	and	returns	true	or	false,	depending	on	whether	the	number	is	even	
or	not.	Therefore,	thereExists	is	a	higher-order	function.	
Similarly,	forAll	is	a	higher-order	function.	

	
11. Currying	

11.1.1. f	:	number	->	number	
11.1.2. f∘g	:	number	->	number	
11.1.3. The	result	is	a	new	function	add2,	with	the	formula	add2(y)	=	y	+	2.	

add2:	number	->	number	
11.1.4. When	you	compose	one	function	with	another	function,	you	get	yet	another	

function.	
∘	:	function,	function	->	function	

11.1.5. 	The	parameter	list	for	applyNTimes	is	a	function	(such	as	x + 1)	and	a	
number	(such	as	3).	The	result	is	a	function	(represented	by	an	expression	such	as	
((x + 1) + 1) + 1).			
applyNTimes : function, number -> function	

	 21	

11.1.6. The	addF	function	takes	two	functions	as	its	parameters	and	returns	yet	another	
function	as	its	result.	
addF : function, function -> function

11.1.7. I	didn't	focus	on	this	point	in	the	video,	but	when	you	go	from	add	to	curryAdd,	
you're	applying	a	function	that	you	can	call	the	curry	function.	In	this	example,	
the	curry	function	takes	the	add	function	as	its	argument	and	returns	the	
curryAdd	function	as	its	result.	
curry : function -> function

12. Closures	
12.1. The	output	is		

5
25
10
100
125

12.2. The	output	is	
Hello, Mr. Williams!
Hello, Ms. Polywether!
Hi, Joe!

12.3. The	output	is	
Hello	(after	waiting	1	second)	
Goodbye	(after	waiting	4	more	seconds)	
	

13. Introduction	to	Lists	
General	

13.1. head(tail([6,9,12,8])) = head([9,12,8]) = 9	
13.2. tail(tail(tail([6,9,12,8]))) = tail(tail([9,12,8]))	

= tail([12,8]) = [8]
13.3. construct(10,tail([21,15])) = construct(10,[8]) = [10,8]	
13.4. false	because tail([18,8]) is	equal	to [8] (the	list	whose	only	entry	is	the	

number	8)	which	isn't	quite	the	same	as	the	number	8.	
13.5. concatenate(concatenate([1,3],[1,8]),[0,0]) = 	

concatenate([1,3,1,8],	[0,0])	=	[1,3,1,8,0,0]	
13.6. With x = [3,2,19],	construct(head(x),tail(x)) =	

consttruct(3, [2,9]) = [3,2,9] = x
	

14. Recursion	
and	
15. More	Recursion	Examples	

15.1. 	
isAPalindrome(aList) = (aList equals reverse(aList))

15.2. 	
last(aList) = head(reverse(aList))

	 22	

15.3. 	
factorials(1) = [1]
factorials(n) =
 concatenate(factorials(n-1),[last(factorials(n-1))*n])

15.4. 	
sum([]) = 0
sum(h::t) = h + sum(t)

15.5. 	
firstNFrom(h::t, 1) = [h]
firstNFrom(h::t, n) = construct(h, firstNFrom(t, n-1))

15.6. 	
alternates([]) = []
alternates(h::[]) = [h]
alternates(h::t) = h :: (alternates (tail t))

16. Computations	that	Might	Fail	
16.1. 	

sqrtMaybe(10-10) is Just 0
Binding Just 0 with minus4Maybe yields Just -4
Binding Just -4 with reciprocalMaybe yields Just -1/4
Binding Just -1/4 with plus13Maybe yields Just 12.75

16.2. 	
sqrtMaybe(17-1) is Just 4
Binding Just 4 with minus4Maybe yields Just 0
Binding Just 0 with reciprocalMaybe yields Nothing
Binding Nothing with plus13Maybe yields Nothing

16.3. 	
sqrtMaybe(9-10) is Nothing
Binding Nothing with minus4Maybe yields Nothing
Binding Nothing with reciprocalMaybe yields Nothing
Binding Nothing with plus13Maybe yields Nothing

16.4. 	
reciprocalMaybe(1) is Just 1/1 which	is Just 1
Binding Just 1 with sqrtMaybe yields Just 1

16.5. 	
reciprocalMaybe(0) is Nothing
Binding Nothing with sqrtMaybe yields Nothing

16.6. 	
16.6.1. 	

definitionMaybe("house") is
Just "A building whose purpose is to regularly shelter the
same person or people."	

Binding Just "A building whose purpose is to regularly shelter
the same person or people."	to lengthMaybe yields Just 75.

	 23	

16.6.2. 	
definitionMaybe("bxbutw") is Nothing
Binding	Nothing	to	lengthMaybe	yields	Nothing.	

16.7. 	
bind : Maybe a string, f -> Maybe an integer
with	
f : string -> Maybe an integer

The	rule	for	applying	this	exercise's	bind	is	the	same	as	the	rule	for	the	bind	in	the	
video:	"If	you	have	Just y,	apply	f	to	y	getting	Just f(y)	or	Nothing.	If	you	
have	Nothing,	get	Nothing."	
	

17. More	Monads	
17.1. 	

parentsOf >>= parentsOf >>= siblingsOf
17.2. 	

employeesOf : person -> list of people
clientsOf : person -> list of people
bind : list of people, f -> list of people
The	rule	for	applying	this	exercise's	bind	is	the	same	as	the	rule	for	the	bind	in	
the	video:	"Apply	f	to	each	person	in	the	list,	and	then	flatten	the	resulting	
list."	

17.3. 	
employeesOf >>= parentsOf

17.4. Define	two	functions,	sqrtMaybeMess	and	reciprocalMaybeMess.	
	
 sqrtMaybeMess(4) is Just 2
sqrtMaybeMess(-4) is ErrorBecauseOf -4
reciprocalMaybeMess(5) is Just 1/5
reciprocalMaybeMess(0) is ErrorBecauseOf 0

The	rule	for	applying	bind	is	as	follows:	"If	you	have	Just y,	apply	f	to	y	getting	
Just f(y)	or	ErrorBecauseOf y.	If	you	have	ErrorBecauseOf y,	get	
ErrorBecauseOf y."	
	
So,	for	example,	in	the	expression	sqrtMaybeMess(x-7) >>=
minus4MaybeMess >>= reciprocalMaybeMess >>= plus13MaybeMess	
with	x	=	23,		
	
sqrtMaybeMess(23-7) is Just 4
Binding Just 4 with minus4MaybeMess yields Just 0
Binding Just 0 with reciprocalMaybeMess yields ErrorBecauseOf 0
Binding	ErrorBecauseOf	0	with	plus13MaybeMess	yields	ErrorBecauseOf 0

	 24	

sqrtMaybeMess : float -> MaybeAFloatWithMessage
reciprocalMaybeMess : float -> MaybeAFloatWithMessage
bind : MaybeAFloatWithMessage, f -> MaybeAFloatWithMessage

