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chapter 1

��

I [1.1] : Prove properties a) through h) using order properties 1 through 4 and the

field properties.

� First of all, the properties to prove are (cf. Ex. 1.1 in the book: they are
listed immediately before the problem):

a) x < y if and only if 0 < y − x.
b) If x < y and w < z, then x+ w < y + z.
c) If 0 < x and 0 < y, then 0 < x+ y.
d) If 0 < z and x < y, then xz < yz.
e) If z < 0 and x < y, then yz < xz.
f) If 0 < x then 0 < x−1.
g) If x 6= 0 then 0 < x2.

h) If x < y, then x < (x+y)
2 < y.

Here are the proofs:

a) If x < y, then add −x to both sides to get 0 < y − x. If 0 < y − x, add x
to each side to get x < y.

b) x+ w < y + w < y + z and use transitivity.
c) Apply b) with x,w = 0, y and z being replaced by respectively, x, y.
d) By a), y − x > 0, which means z(y − x) > 0 by Axiom 4. Therefore

zy − zx > 0, or (using a) again) yz > xz.
e) xz − yz = (x − y)(z) = (y − x)(−z). Now, y − x > 0 by a), and −z >

0, applying a) (−z < 0 if and only if 0 < 0 − (−z) = z). Therefore
(y − x)(−z) > 0 by Axiom 4. This implies xz − yz > 0, which means
xz > yz by a) again.

f) Clearly x−1 6= 0 (since xx−1 = 1 6= 0). If x−1 < 0, then 1 = xx−1 < 0
(using d)). But if 1 < 0, then−1 > 0 and Axiom 4 yields 1 = (−1)(−1) > 0.
This is a contradiction.

g) If x > 0 then Axiom 4 shows that x2 > 0. If x < 0 then −x > 0 (by (i))
and x2 = (−x)2 > 0 by Axiom 4.

h) Clearly 2x = x + x < x + y < y + y = 2y. Multiply each side by 1
2 . Note

that 1
2 = 2−1 = (1 + 1)−1 > 0 since 1 > 0 as was mentioned in the proof of

f). The property drops out.
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�

I [1.2] : A maximal element or maximum of a set A ⊂ R is an element x ∈ A
such that a ≤ x for all a ∈ A. Likewise, a minimal element or minimum of a set A is

an element y ∈ A such that y ≤ a for all a ∈ A. When they exist, we will denote a

maximal element of a set A by maxA, and a minimal element of a set A by minA.

Can you see why a set A ⊂ R need not have a maximal or minimal element? If either

a maximal or a minimal element exists for A ⊂ R, is it unique?

� R has neither a minimal element nor a maximal element. Uniqueness
follows since if M1 ∈ S and M2 ∈ S are maximal elements of some set S, then
M1 ≥M2 (since M2 ∈ S and M1 is maximal) and M2 ≥M1 (since M1 ∈ S and
M2 is maximal). Thus M1 = M2. The case of a minimal element is analogous
and is left to the reader. �

I [1.3] : A partition of a set S is a collection of nonempty subsets {Aα} of S

satisfying
⋃
Aα = S and Aα ∩ Aβ = ∅ for α 6= β. Prove that any two sets A,B ⊂ R

satisfying the Dedekind completeness property also form a partition of R.
� We need to check that A ∪B = R and A ∩B = ∅. The first is property
(i) of the Dedekind completeness property in RC. If x ∈ A ∩ B, then x ∈ A
and x ∈ B, so x < x by property (ii) of the Dedekind completeness property,
contradiction. �

I [1.4] : In part b) of the above example, show that the set A does not have a

maximal element.

� If x ∈ A, then

ξ ≡
x+ 1

2

2
belongs to A but (prove!) ξ > x, cf. the final part of Ex. 1.1.

Thus x is not a maximal element of A. In fact, the number ξ constructed
above is just the mean of x and 1

2 . �

I [1.5] : Establish the following:

a) Show that, for any positive real number x, there exists a natural number n such
that 0 < 1

n < x. This shows that there are rational numbers arbitrarily close to zero
on the real line. It also shows that there are real numbers between 0 and x.

b) Show that, for any real numbers x, y with x positive, there exists a natural number
n such that y < nx.

� There exists n ∈ N with n > 1
x > 0, and invert. (Here we need x > 0.)

This proves the first part. For the second, apply the Archimedean Property to
y
x . We get a number n′ ∈ N with y

x < n′, so y < n′x. �

I [1.6] : Use the Archimedean property and the well-ordered property to show

that, for any real number x, there exists an integer n such that n − 1 ≤ x < n. To

do this, consider the following cases in order: x ∈ Z, {x ∈ R : x > 1}, {x ∈ R : x ≥
0}, {x ∈ R : x < 0}.
� The case of x ∈ Z is trivial (take n = x + 1). If x > 1, there exists a
positive integer n′ with x < n′. Let S = {m ∈ N : m > x}. Since n′ ∈ S,
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S 6= ∅. By the Well-Ordered Property, one can choose n ∈ S so that it is the
least element of S.

I claim that n − 1 ≤ x < n. The right inequality is the definition of S.
Suppose the left inequality was false; then n− 1 > x s o n− 1 ∈ S. But then
n would not be the smallest element of S, contradiction. The claim is proved.

The case x ≥ 0 now follows finding a natural number n as above such that
n− 1 ≤ 2 + x < n, then subtracting two from both sides. The case x < 0 can
be handled similarly. Choose M ∈ N with −M < x (justify this!) and apply
the above argument to x+M , then subtract M .

�

I [1.7] : Show that if ξ is irrational and q 6= 0 is rational, then qξ is irrational.

� If qξ ∈ Q, then ξ = q−1(qξ) ∈ Q, contradiction. �

I [1.8] : In this exercise, we will show that for any two real numbers x and y

satisfying x < y, there exists an irrational number ξ satisfying x < ξ < y. The result of

this exercise implies that there are infinitely many irrational numbers between any two

real numbers, and that there are irrational numbers arbitrarily close to any real number.

To begin, consider the case 0 < x < y, and make use of the previous exercise.

� Suppose first x and y are rational. Pick an irrational number, say
√

2.
There exists n ∈ N so that 1

n

√
2 < y − x by an extension of the Archimedean

Property (see Exercise 1.5). Then x + 1
n

√
2 is the required ξ. If x and y are

not both rational, choose rational numbers r1, r2 with x < r1 < r2 < y (by the
density of the rationals, see RC above this exercise) and apply this construction
for r1 and r2. �

I [1.10] : Prove the above corollary. Show also that the conclusion still holds

when the condition |x| < ε is replaced by |x| ≤ ε.
� If x 6= 0, then |x| > 0. Set ε = |x| to get |x| < |x|, a contradiction. For

the second statement, do the same but with ε = |x|
2 . �

I [1.12] : Finish the proof of the triangle inequality. That is, show that

||x| − |y|| ≤ |x− y| ≤ |x|+ |y| for all x, y ∈ R.

� First, we prove the rest of part a). Just switch y with −y. In detail, we
have already shown that

(1) |x+ y| ≤ |x|+ |y| ,

but we must show

(2) |x− y| ≤ |x|+ |y| .

Now, in (1), simply replace y by −y. Since |−y| = |y|, we find (2) follows
directly. The rest of part b) may be proved the same way (replacing y with
−y). �

I [1.13] : Show that |x− z| ≤ |x− y|+ |y − z| for all x, y, and z ∈ R.

7
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� This form of the triangle inequality is frequently used. To prove it, note
that

|x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| ,
where we have used the usual triangle inequality with x− y for x and y− z for
y. �

I [1.14] : Prove the above corollary.

� We need to prove

(3) |x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn| .

Induction on n. It is true trivially for n = 1. Assume it for n− 1. Then by the
Triangle Inequality

|x1 + · · ·+ xn| ≤ |x1 + · · ·+ xn−1|+ |xn| ,

and applying the case n− 1 of (3) concludes the proof. Incidentally, the reader
should already be familiar with such inductive arguments. �

I [1.15] : Prove the above properties.

� All these follow immediately from the corresponding properties in R. We
only do a sampling.

(1)

x + y = (x1, . . . , xk) + (y1, . . . , yk)

= (x1 + y1, . . . , xk + yk)

= (y1 + x1, . . . , yk + xk)

= y + x.

(2)

(x + y) + z = ((x1, . . . , xk) + (y1, . . . , yk)) + (z1, . . . , zk)

= (x1 + y1, . . . , xk + yk) + (z1, . . . , zk)

= (x1 + y1 + z1, . . . , xk + yk + zk)

= (x1, . . . , xk) + (y1 + z1, . . . , yk + zk)

= (x1, . . . , xk) + ((y1, . . . , yk) + (z1, . . . , zk))

= x + (y + z).

9. We only show the first equality here.

c(x + y) = c ((x1, . . . , xk) + (y1, . . . , yk)) = c(x1 + y1, . . . , xk + yk)

= (c(x1 + y1), . . . , c(xk + yk))

= (cx1 + cy1, . . . , cxk + cyk)

= (cx1, . . . , cxk) + (cy1, . . . , cyk)

= cx + cy.

�
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I [1.17] : Suppose 〈·, ·〉 is an inner product on Rk. Let x and y be arbitrary

elements of Rk, and c any real number. Establish the following.

a) c〈x,y〉 = 〈cx,y〉 b) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
� For a), c〈x,y〉 = c〈y,x〉 = 〈y, cx〉 = 〈cx,y〉 where Condition 3 of Defi-
nition 2.1 was used twice. The proof of b) is similar: 〈x + y, z〉 = 〈z,x + y〉 =
〈z,x〉+ 〈z,y〉 = 〈x, z〉+ 〈x,y〉 . �

I [1.19] : Verify the other properties of Definition 2.1 for the dot product.

� x · x =
∑k

j=1 x
2
j ≥ 0 and that sum is clearly positive unless all xj = 0,

i.e., x = 0. This proves 1. Property 2 is clear:

x · y =

k∑
j=1

xjyj =

k∑
j=1

yjxj = y · x.

For Property 3,

x · (y + z) =

k∑
j=1

xj(yj + zj) =
∑

xjyj +
∑

xjzj = x · y + x · z.

We leave Property 4 to the reader. �

I [1.20] : For a given norm | · | on Rk and any two elements x and y in Rk,
establish

|x− y| ≤ |x|+ |y|,
and ∣∣∣ |x| − |y|∣∣∣ ≤ |x± y|.

These results together with part 3 of Definition 2.4 are known as the triangle inequality

and the reverse triangle inequality, as in the case for R given by Theorem 1.5 on page 9.

� |x−y| = |x+−y| ≤ |x|+|−y| = |x|+|−1||y| = |x+y|. For the Reverse
Triangle Inequality, repeat the proof given in RC for the regular absolute value
but now putting in norms. We shall not rewrite it here, since no new techniques
whatsoever are used. �

I [1.21] : Suppose x ∈ Rk satisfies |x| < ε for all ε > 0. Show that x = 0.

� If x 6= 0, then |x| > 0. Taking ε = |x| and using the hypothesis of the
theorem gives

|x| < |x| ,
contradiction. �

I [1.22] : Verify the other norm properties for the induced norm.

� In RC, the Triangle Inequality (i.e. the third property for norms) was

proved. For Property 1, note that |x| =
√
〈x,x〉 ≥ 0, with equality if and only

if 〈x,x〉 = 0, i.e. if x = 0 by inner product properties. For Property 2,

|cx| =
√
〈cx, cx〉 =

√
c2 〈x,x〉 =

√
c2
√
〈x,x〉 = |c| |x| .

�
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I [1.24] : Establish the above properties by using the definitions.

� 1, 2, 3, and 4 are trivial—see the definition of addition and use the corre-
sponding properties of real addition. As an example, we prove Property 1:

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i(y1 + y2)

= (x2 + x1) + i(y2 + y1)

= (x2 + iy2) + (x1 + iy1)

= z2 + z1.

For 5, note that

(x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + y1x2) = (x2 + iy2)(x1 + iy1),

as the definition is symmetric in both factors. 6 is a messy but straightforward
computation, which we shall not write out. For Property 7, note that

1z = (1 + i0)(x+ iy) = x− 0y + i(0x+ y) = x+ iy = z.

8 is discussed in Exercise 1.25 in more detail. 9 is left to the reader—it
is simply a computation. The reader familiar with abstract algebra can define
C ≡ R[X]/(X2 + 1) and will get the same result with all these properties
becoming obvious consequences of those of R. �

I [1.25] : Verify the above claim, and that zz−1 = 1.

� Let z = a+ ib.

zz−1 = (a+ib)

(
a

a2 + b2
− i b

a2 + b2

)
=

a2

a2 + b2
+

b2

a2 + b2
−i ab

a2 + b2
+i

ba

a2 + b2
= 1

�

I [1.26] : Suppose z and w are elements of C. For n ∈ Z, establish the following:

a) (zw)n = znwn b) (z/w)n = zn/wn for w 6= 0

� We only give the proof of a). Induction on n. Assume a) true for n − 1.
(It is trivial for n = 1.) Then

(zw)n = (zw)n−1(zw) = zn−1wn−1zw = zn−1zwn−1w = znwn.

We have liberally used commutativity and associativity. This establishes the
inductive step: if a) is true for n − 1, it is true for n. The proof is complete.

�

I [1.27] : Show that any ordering on C which satisfies properties (2) on page 5

cannot satisfy properties (1.1) on page 5. (Hint: Exploit the fact that i2 = -1.)

� Suppose i > 0. Then −1 = i × i > 0, or 1 < 0. But then, multiplying
−1 > 0 by 1 (and reversing the direction, since 1 < 0) yields −1 < 0, a
contradiction.

10
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Thus i < 0, or −i > 0. Then −1 = (−i)(−i) > 0 which yields a contradic-
tion again. �

I [1.29] : Prove each of the above properties.

� Properties a)-d) are left to the reader. For e),

(x1 + iy1)(x2 + iy2) = x1x2 − y1y2 − i(x1y2 + y1x2),

which is the same as

(x1 + iy1)× (x2 + iy2) = (x1− iy1)(x2− iy2) = x1x2− y1y2− i(x1y2 + y1x2).

For f), it is sufficient to treat the case z1 = 1, in view of e). (Why?) Note
that

1

x+ iy
=

x− iy
x2 + y2

,

and inspection shows that f holds. These properties state that conjugation is
an automorphism of C.1 �

I [1.30] : Verify the equivalence of (1.6) with (1.5).

� If z = x+ iy, then |z| =
√
x2 + y2 =

√
(x+ iy)(x− iy) =

√
zz. �

I [1.31] : Prove the properties in the above theorem.

� We write z = x + iy. The expression |z| =
√
x2 + y2 makes Properties

a)-c) immediate. For property d), note that

|z1z2| =
√
z1z2z1z2 =

√
z1z1z2z2 =

√
z1z1

√
z2z2 = |z1| |z2| .

Property e) follows from Property d) together with the identity
∣∣1
z

∣∣ = 1
|z| , which

in turn follows by multiplying both sides by |z| and using d). f) is clear from

|z| =
√
x2 + y2. g) is clear from the definition. h) can be verified by direct

multiplication:

z × z

|z|2
=

zz

|z|2
=
|z|2

|z|2
= 1,

so z
|z|2 = 1

z . i) is straightforward; just check the definitions z = x − iy, so

z + z̄ = x + iy + x − iy = 2x = 2Re(z) and similarly for the imaginary part.

The first part of j) follows from |Re(z)| = |x| =
√
x2 ≤

√
x2 + y2 = |z|, and

the second part is similar. �

I [1.34] : Show that if θ and φ are both elements of arg z for some nonzero

z ∈ C, then φ = θ + 2πk for some k ∈ Z.
� By assumption, we have reiθ = reiφ, where r = |z|. Dividng out, we see
that this means cos θ = cosφ and sin θ = sinφ. These two equalities, together
with the basic properties of the trigonometric functions, show that θ and φ
differ by a multiple of 2π. In fact, we may without loss of generality assume
(by subtracting multiples of 2π) that both θ, φ ∈ [0, 2π); then we must show

1Technically, one must also show it is also one-to-one and onto, but that is
straightforward.
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θ = φ. This follows from the basic properties of the trigonometric functions.
If θ 6= φ, then θ and φ dtermine different angles from the positive x-axis since
θ, φ ∈ [0, 2π). So mark the points P1, P2 on the unit circle with angles θ and
φ from the positive x-axis. These points P1, P2 must differ in one of their
coordinates, which means that either sin θ 6= sinφ or cos θ 6= cosφ. �

I [1.35] : Prove the remaining properties in the above result.

� e) follows from the previous exercise’s argument. f) follows from sin2 θ +
cos2 θ = 1, since∣∣∣eiθ∣∣∣ = |cos θ + i sin θ| =

√
cos2 θ + sin2 θ = 1.

g) follows from the evenness of cos θ and the oddness of sin θ. Precisely, we
have

eiθ = cos θ + i sin θ

= cos θ − i sin θ

= cos(−θ) + i sin(−θ)

= e−iθ.

f) is a consequence of g) and the properties of the conjugate:

eiθ + e−iθ = eiθ + eiθ = 2Re(eiθ) = 2 cos θ.

�

I [1.39] : Show that every quadratic equation of the form a z2 + b z + c = 0

where a, b, c ∈ C has at least one solution in C. Also show that if b2 − 4 a c 6= 0, then

the equation has two solutions in C.
� Substitute in the elementary quadratic formula, using the fact that b2−4ac
has two square roots in C if it is not zero. If b2−4ac = 0, there will be only one
solution. It is left to the reader to see that the elementary quadratic formula is
still valid over C.2 �

I [1.40] : Show that for z0 = x0 + iy0 ∈ C, the product z0z can be computed

via the matrix product

[
x0 −y0

y0 x0

](
x
y

)
for any z = x+ iy ∈ C.

� Computation. [
x0 −y0

y0 x0

] [
x
y

]
=

[
x0x− y0y
y0x+ x0y

]
.

Also,
(x0 + iy0)(x+ iy) = x0x− y0y + i(y0x+ x0y).

�

I [1.41] : Verify that any matrix from M represents a scaling and rotation of

the vector it multiplies.

2Actually, it is valid in any field of characteristic 6= 2 (i.e. where 2 6= 0).
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� We can write any matrix in M in the form√
x2

0 + y2
0

 x0√
x20+y20

− y0√
x20+y20

y0√
x20+y20

x0√
x20+y20

 .
For any elements a, b ∈ R with a2 + b2 = 1, we can find an angle θ with
a = cos θ, b = sin θ.3 We apply that to x0√

x20+y20
and y0√

x20+y20
to write the above

matrix in the form with r > 0

r

[
cos θ − sin θ
sin θ cos θ

]
.

The expression there is a scaling (by r) times a rotation (by θ). �

3Proof: Write θ = cos−1(a); then sin θ = ±b and if sin θ = −b replace θ by 2π − θ.
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��

I [2.1] : Determine whether the given set is bounded or unbounded.

a) S =
{
z ∈ C : |z|+ |z − 1| < |z − 2|

}
b) S =

{
z ∈ C : |z|+ |z − 1| > |z − 2|

}
c) S =

{
xn ∈ R3 : xn =

(
n22−n, n

2+1
2n3+1 ,

cosn√
n

)}
� a) Bounded. z ∈ S implies

2 |z| − 1 ≤ |z|+ |z − 1| < |z − 2| < |z|+ 2

by, in order, the reverse triangle inequality, the definition of S, and the
triangle inequality. Thus for z ∈ S:

|z| < 3.

Hence S is bounded.
b) Unbounded: all sufficiently large real numbers belong to S. In fact, if x ≥ 2,

the condition becomes

x+ x− 1 > x− 2,

which is clearly true for such x. So all x ≥ 2 are in S, which cannot therefore
be bounded.

c) Bounded: each component is bounded. First, n22−n ≤ 2 for all n. To see
this, use induction: it is true for n = 1, 2, 3 obviously. If it is true for n− 1,
then (n − 1)2 ≤ 2 × 2n−1. But since n2 ≤ 2(n − 1)2 if n > 3 (Why?)
which means that n2 ≤ 2× 2× 2n−1 = 2× 2n. We have thus proved that
n22−n ≤ 2 for any n.

Now we look at the other components. The second components are
bounded by 1, and so are the third components. This is easy to see as
n2 + 1 ≤ 2n3 + 1 and |cosn| ≤ 1.

Now for any vector x = (x1, x2, x3) ∈ R3, we have by the Triangle
Inequality

|x| = |x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 0, 1)| ≤ |x1|+ |x2|+ |x3| .
15
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So if x ∈ S, then

|x| ≤ 2 + 1 + 1 = 4 by the bounds above on each coordinate.

Hence S is bounded.
�

I [2.2] : Consider a set S ⊂ X.

a) If S is bounded, is SC bounded or unbounded?

b) If S is unbounded, is SC bounded or unbounded?

� a) Unbounded. If x ∈ S implies |x| ≤ M (where M is a fixed large real
number), then all x with |x| > M belong to SC . So all vectors whose norm
is sufficiently large belong to SC . It is now easy to see that SC cannot be
bounded.

b) This can go either way. If S = X then SC = ∅ is clearly bounded; if S ⊂ R
is taken as S = {x : x ≤ 0}, then SC = {x : x > 0} is unbounded.

�

I [2.3] : Suppose {Sα} ⊂ X is a collection of bounded sets.

a) Is
⋃
Sα bounded? b) Is

⋂
Sα bounded?

� a) In general, no. Let Sn = {n} for n ∈ N. Then each Sn is bounded (as
a one-point set) but

⋃
n Sn = N is unbounded by the Archimedean property.

If the collection is finite, the answer becomes always yes. We leave that to
the reader.

b) Yes. Pick any set Sβ. Then Sβ ⊂ {x : |x| ≤ M} for some large M , by
definition of boundedness. Then⋂

α

Sα ⊂ Sβ ⊂ {x : |x| ≤M}.

In particular,
⋂
α Sα is bounded with the same bound M .

�

I [2.4] : Prove that a set of real numbers S is both bounded above and bounded

below if and only if it is bounded.

� If S is bounded, say x ∈ S implies |x| ≤ M , then x ∈ S implies −M ≤
x ≤ M . So −M is a lower bound and M an upper bound. Conversely, if we
are given a lower bound L and an upper bound U to S, then any x ∈ S by
assumption satisfies L ≤ x ≤ U . If we take M ≡ max(|L| , |U |), then x ∈ S
implies

|x| ≤M,

so S is bounded. �

I [2.6] : Complete the proof of the above theorem. That is, suppose S is a

nonempty set of real numbers which is bounded below, and show from this that inf S

exists.

� One can repeat the proof of the theorem with a slight modification, but
there is a quicker route. If S is bounded below, then −S ≡ {x : −x ∈ S}

16
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is bounded above, as is easily seen.1 −S therefore has a least upper bound
M . Set m = −M ; then if x ∈ S, −x ∈ −S. Thus −x ≤ M which means
x ≥ −M = m. This shows that m is a lower bound for S. If ε > 0, then M − ε
is not an upper bound for −S; equivalently, m+ ε is not a lower bound for S.
This shows that m is the greatest lower bound. (Why?)

For convenience, we present a modified version of the proof in the text. Let
A be the set of all lower bounds on S, and let B = AC . Then R = A ∪ B,
and a < b for all a ∈ A and for all b ∈ B. (Why?) Since A and B satisfy our
Dedekind completeness property criteria, either A has a maximal element or B
has a minimal element. Suppose B has a minimal element, β. Then β ∈ B, so
β is not an lower bound for S, i.e., there exists s ∈ S such that β > s. Since
this is a strict inequality, there must exist a real number between β and s. In
fact, c ≡ (β + s)/2 is such a real number, and so β > c > s. But c > s implies
c 6∈ A, i.e., c ∈ B. Since β > c, we have a contradiction, since β ∈ B was
assumed to be the smallest element of B. Therefore, since our completeness
criteria are satisfied, and B does not have a minimal element, it must be true
that A has a maximal element, call it α. Clearly α is the greatest bound or
inf S. �

I [2.8] : Recall that a maximal element of a set S is an element x ∈ S such that

s ≤ x for all s ∈ S. Likewise, a minimal element of a set S is an element y ∈ S such

that y ≤ s for all s ∈ S. When they exist, we may denote a maximal element of a set

S by maxS, and a minimal element of a set S by minS. Show that if S has a maximal

element, then maxS = supS. Likewise, show that if S has a minimal element, then

minS = inf S.

� We prove only the assertion for the maximal element. Let x be a maximal
element and M any upper bound. Then x ≤ M because in fact x ∈ S. In
particular, if M is the least upper bound, then x ≤ M = supS. But x is an
upper bound for S, by definition. Thus supS ≤ x since supS is the least upper
bound. Together this shows that x = supS. �

I [2.9] : Prove the above proposition.

� We prove only part a) of the proposition. The rest is entirely analogous. If
u < MS , then u cannot be an upper bound for S. Thus there must exist some
s ∈ S with s > u. Also s ≤ MS since MS is an upper bound. We are done.

�

I [2.10] : Use Proposition 1.14 to show that if supS exists for S ⊂ R, then

supS is unique. Do likewise for inf S.

� We prove that the sup is unique. Suppose both A and B are least upper
bounds and, say, A < B. There exists s ∈ S so that A < s ≤ B by that
proposition, so that A is not an upper bound, a contradiction. The reader can
modify the above argument for the inf, or alternatively use the trick already
referred to of considering the set −S. �

1If v is a lower bound for S, −v is an upper bound for −S.
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I [2.11] : Recall that any interval of real numbers contains infinitely many
rational and infinitely many irrational numbers. Therefore, if x0 is a real number,
then every neighborhood Nr(x0) centered at x0 contains infinitely many rational and
infinitely many irrational numbers. Let A and B be subsets of R2 defined as follows:

A =
{

(x, y) ∈ R2 : x, y ∈ Q
}

and B =
{

(x, y) ∈ R2 : x, y ∈ I
}
.

That is, A consists of those vectors from R2 having only rational components, and B

consists of those vectors of R2 having only irrational components. If x0 is an arbitrary

vector in R2, show that every neighborhood Nr(x0) centered at x0 contains infinitely

many elements of A and infinitely many elements of B. Investigate the comparable

situation in Rk and in C.
� Suppose x0 = (x1, x2). Choose ξ1 ∈ Q with ξ1 ∈

(
x1 − r√

2
, x1 + r√

2

)
,

which we know we can do. Choose ξ2 ∈ Q with ξ2 ∈
(
x2 − r√

2
, x2 + r√

2

)
.

Clearly (ξ1, ξ2) ∈ A, and

|(ξ1, ξ2)− (x1, x2)| <

√(
1

2
+

1

2

)
r2 = r.

The case for B is similar: just choose ξ1, ξ2 ∈ I instead of Q. Then ξ1, ξ2 ∈
B ∩ Nr(x0). The case for Rk is similar too but there are k real numbers ξj
(1 ≤ j ≤ k) and

√
2 is replaced by

√
k in the above proof. The case for C is

no different from that of R2. �

I [2.12] : Prove the above claim in the following two steps: First, consider

an arbitrary point in X and show that it must satisfy at least one of the above three

characterizations. Then, prove that if a point in X satisfies one of the above three

characterizations, it cannot satisfy the other two.

� We first show that at least one of 1, 2, 3 hold. If 1 and 2 are false, then
for each neighborhood Nu(x0),

a) Nu(x0) is not contained in A, so Nu(x0) ∩AC 6= ∅.
b) Nu(x0) is not contained in AC , so Nu(x0) ∩AC 6= ∅.

These are just the negations of 1 and 2, and together they establish 3. So at
least one property holds.

We now show they are mutually exclusive.
Suppose 1 holds, i.e. a neighborhood Nr(x) of x is contained in A. Then

x ∈ A, so x is not an exterior point of A and 2 cannot hold. Also, x cannot
be a boundary point of A because then we would have Nr(x) ∩ AC 6= ∅, in
contradiction to the assumption Nr(x) ⊂ A.

If 2 holds, then there exists Ns(x) ⊂ AC . Then x ∈ AC , so no neighborhood
of x a fortiori can be contained in A, so x doesn’t satisfy 1. Also since Ns(x)∩
A = ∅, x doesn’t satisfy 3 either.

Similarly, if 3 holds, 2 and 1 do not. Let x is a boundary point of A. Suppose
x were an interior point of A; we shall establish a contradiction. In this case,
there exists a neighborhood Nt(x) ⊂ A, so Nt(x)∩AC = ∅, contradicting the
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assumption that x is a boundary point. Thus if 3 holds, 1 does not. A similar
argument shows that 2 does not. �

I [2.13] : Complete part (iii) of the previous example by showing that Nr(x3)

for r ≥ 1 must contain at least one point in A and at least one point in AC .

� If r ≥ 1, then Nr(x3) ⊃ N1/2(x3). Now N1/2(x3) contains points from

both A and AC because 1
2 < 1 and by the above Example. A fortiori, the larger

set Nr(x3) must contain points from both A and AC . �

I [2.14] : For A ⊂ X, show that ∂A = ∂
(
AC
)
.

� x ∈ ∂A iff2 every neighborhood of x contains points of A and AC , i.e. iff
each neighborhood contains points of AC and (AC)C = A.

Similarly, x ∈ ∂AC iff every neighborhood of x contains points of AC and

(AC)
C

= A. Both these conditions are the same. Thus x ∈ ∂A iff x ∈ ∂(AC),
i.e. ∂A = ∂(AC). �

I [2.15] : Show that ∂Q = R. Show the same for ∂I.
� Any neighborhood of any x ∈ R contains elements of Q and QC = I
(an important fact proved in Chapter 1 using the Archimedean property, pages
6–7) so x ∈ ∂Q. Thus ∂Q = R. For I, use Exercise 1.8 of Ch. 1 to see that
∂I = ∂Q = R. �

I [2.16] : Show that, in fact, if x0 is a limit point of A, then every deleted

neighborhood of x0 contains infinitely many points of A.

� If there were a deleted neighborhood N ′1 of x0 containing only finitely many
points of A, say ζ1, . . . , ζk, then take

r ≡ min
1≤j≤k

|ζj − x0| > 0,

i.e. so small that ζj /∈ Nr(x0) for all j. Note that N ′r(x0) ⊂ N ′1 (Why?) so
that its only possible intersection with A consists of the points ζj , which we
know are not in N ′r(x0). Thus we see that N ′r(x0) ∩ A = ∅, a contradiction.

�

I [2.17] : Show that if x0 ∈ X is not a limit point of A ⊂ X, then x0 is a limit

point of AC .

� That x0 is not a limit point of A means that there is a deleted neighborhood
N of A containing no points of A, i.e. contained in AC . So N ⊂ AC .

Now if N2 is any deleted neighborhood of x0, then N2 ∩ N 6= ∅ (Why?),
so N2 ∩AC 6= ∅ as well. Hence, x0 is a limit point of AC . �

I [2.18] : It is not necessarily true that if x is a boundary point of a subset A of

X, then x must be a limit point of A. Give a counterexample.

� Take A = {0} ⊂ R, x = 0. x is clearly a boundary point of A but not a
limit point because N ′1(0) ∩A = ∅. �

2In these solutions, we abbreviate “if and only if” to “iff,” a notation due to Paul
Halmos.
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I [2.19] : Suppose x0 is an exterior point of A ⊂ X. Then show that x0 can

never be a limit point of A. But show that x0 is necessarily a limit point of AC .

� By assumption there exists a neighborhood Nr(x0) ⊂ AC . A fortiori
N ′r(x0)∩A = ∅, so x0 is not a limit point of A. By exercise 2.17, x0 is a limit
point of AC . �

I [2.20] : If A ⊂ B ⊂ X, show that A′ ⊂ B′.
� If x ∈ A′, then by definition N ′r(x) ∩ A 6= ∅ for all r > 0. Since A ⊂ B,
we have in fact N ′r(x) ∩B 6= ∅ for any r, whence x ∈ B′ as well. �

I [2.22] : Prove or disprove: The point x ∈ A ⊂ X is not an isolated point of

A if and only if x is a limit point of A.

� x is not an isolated point of A iff there exists no deleted neighborhood
N ′r(x) of x such that A ∩ N ′r(x) = ∅. This is simply the negation of the
definition.

In other words, x is not an isolated point iff for all deleted neighborhoods
N ′r(x) of x,

A ∩N ′r(x) 6= ∅,

i.e. if x ∈ A′. �

I [2.23] : Suppose S ⊂ R is bounded and infinite. Let MS = supS and

mS = inf S. Are MS and mS always in S? Are MS and mS limit points of S? (In

both cases, no. Give counterexamples.)

� If S = (0, 1), neither MS = 1 nor mS = 0 is in A. If S = {−1} ∪ (0, 1) ∪
{2}, neither MS = 2 nor mS = −1 is a limit point of S (since N ′1(0) ∩ S = ∅
and N ′1(2) ∩ S = ∅). �

I [2.24] : Prove the above proposition.

� The following statements are equivalent to each other:

(1) G is open
(2) Each x ∈ G has a neighborhood Nr(x) contained in G (by the defini-

tion of openness)
(3) Each x ∈ G is an interior point of G

That establishes the proposition. �

I [2.25] : For any real r > 0 and any x0 ∈ X, show that N ′r(x0) is an open set.

� If x ∈ Nr(x0), x 6= x0, choose ρ as in the last example. Then Nρ(x) ⊂
Nr(x0). We need to shrink ρ so that x0 does not belong to that neighborhood
of x, because then the neighborhood will be contained in N ′r(x0).

Set ρ′ = min(ρ, |x− x0|). Then Nρ′(x) ⊂ N ′r(x0) because x0 /∈ Nρ′(x).
�

I [2.28] : Complete the proof of part (ii) of the above proposition.
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� Choose r = min(r1, r2). Then Nr(x) = Nr1(x) ∩Nr2(x) in fact because
that intersection is equal to the set

{x : |x− x0| ≤ r1, |x− x0| ≤ r2} = {x : |x− x0| ≤ min(r1, r2)}.

�

I [2.29] : Generalize part (ii) of the above proposition as follows. LetG1, G2, ..., Gn
be open sets in X. Prove that

⋂n
j=1Gj is also open in X. The generalization does not

hold for arbitrary collections {Gα} of open sets. That is, it is not true that
⋂
αGα is

necessarily open if each Gα is open. Find a counterexample to establish the claim.

� The assertion about
⋂n
j=1Gj follows by induction: we know it for n = 1

(trivially) and if it’s true for n − 1,
⋂n−1
j=1 Gj is open. So by the result just

proved

n⋂
j=1

Gj =

n−1⋂
j=1

Gj

 ∩Gn is open, QED.

The second assertion is false: take Gj =
(
−∞, 1

j

)
. Then

⋂∞
j=1Gj = (−∞, 0]

which is not open. �

I [2.30] : Show in each of the cases X = R, C, and Rk that one can find an

open interval Ix such that Ix ⊂ Nr(x) ⊂ G as claimed in the above theorem. Also,

give the detailed argument justifying the final claim that G =
⋃
x∈G Ix.

� The case of R is immediate as a neighborhood is an open interval; we take
Ix = Nr(x). Fix a neighborhood Nr(x) ⊂ Rk and suppose x = (x1, . . . , xk).
Note that(
x1 −

r√
k
, x1 +

r√
k

)
×
(
x2 −

r√
k
, x2 +

r√
k

)
×· · ·×

(
xk −

r√
k
, xk +

r√
k

)
⊂ Nr(x),

as one sees thus: if ξ = (ξ1, . . . , ξk) belongs to that product of intervals, then

|ξ − x| =
√

(ξ1 − x1)2 + · · ·+ (ξk − xk)2 <
√
r2 = r, so ξ ∈ Nr(x).

The case of C is left to the reader.
Finally, to see that G =

⋃
x∈G Ix, note that for each w ∈ G, w ∈

⋃
x∈G Ix

because w ∈ Iw. Thus G ⊂
⋃
x∈G Ix. Next, since each Ix ⊂ G,

⋃
x∈G Ix ⊂ G.

These two assertions prove the claim G =
⋃
x∈G Ix. �

I [2.31] : Prove the above proposition.

� a) follows by inspection, because both ∅ = XC and X = ∅C are open.
For (ii) and (iii) use De Morgan’s laws. For instance, let F1, F2 be closed. Then

(F1 ∪ F2)C = FC1 ∩ FC2 ,

and since FC1 , F
C
2 are open, so is their intersection. By definition, then F1 ∩F2

is closed. A similar argument works for c). Let Fα be a collection of closed
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sets. Then (⋂
α

Fα

)C
=
⋃
α

FCα ,

which is an open set because each FCα is open. �

I [2.32] : Part b) of the above proposition can be generalized in the same way

as the corresponding part in Proposition 3.4 as described in a previous exercise. That

is, let F1, F2, . . . , Fn be closed sets in X. Prove that
⋃n
j=1 Fj is also open in X. Does

the generalization hold for arbitrary collections {Fα} of closed sets? That is, is it true

that
⋃
Fα is necessarily closed if each Fα is closed? (Answer: See the next exercise.)

� Part b) does work for finite unions by a quick induction using part b), but
it does not work for arbitrary collections: take the closed sets Fn =

[
1
n , 1
]

and

consider
⋃
n Fn = (0, 1], which isn’t closed. �

I [2.33] : Come up with an infinite collection of closed sets F1, F2, F3, . . . where⋃∞
j=1 Fj is not closed.

� See the previous solution for the example Fn =
[

1
n , 1
]
. �

I [2.34] : Suppose F is a finite set in X. Show that F is closed.

� We need to show that X − F is open. Now X − {x} is easily seen to be
open for any x ∈ X; it is just the infinite union⋃

n

N ′n(x).

Now X−F is a finite intersection of sets of the form X−{x}, so by an exercise
2.32 X− F is open, hence F is closed. �

I [2.35] : If F ⊂ X is closed, and x0 ∈ X is a limit point of F , prove that

x0 ∈ F .

� Let x0 be a limit point of F . Suppose x0 /∈ F . Since FC is open by
definition, there is a neighborhood Nr(x0) such that Nr(x0) ⊂ FC . A fortiori
N ′r(x0) ⊂ FC . This means that N ′r(x0) ∩ F = ∅, or x0 is not a limit point of
F , a contradiction. �

I [2.36] : Show that for A ⊂ X, if x is a boundary point of A then x ∈ A. Also,

if supA exists then supA ∈ A, and if inf A exists then inf A ∈ A.
� Assume x is a boundary point of A. We must show that x ∈ A or x ∈ A′.
Suppose x /∈ A. Now, by the definition of boundary points, every neighborhood
Nr(x) intersects both A and AC . All we actually need to use is that every
neigborhood Nr(x) intersects A, i.e. Nr(x) ∩A 6= ∅.

But by assumption x /∈ A. Therefore we actually have for all r > 0

N ′r(x) ∩A 6= ∅,

i.e. x is a limit point of A.
We have thus shown the following: If x ∈ ∂A, either x ∈ A or x ∈ A′.

Thus ∂A ⊂ A = A ∪A′.
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We now prove that if A ⊂ R is bounded above, supA ∈ A. We leave the
proof for the inf to the reader. Suppose supA /∈ A (because if the sup were in
A, our conclusion would follow at once); then for all r > 0 there exists a ∈ A
with

supA− r < a ≤ supA, but because supA /∈ A, supA− r < a < supA.

It follows that N ′r(supA)∩A 6= ∅ because it contains a. This is true for all r,
so supA ∈ A′ ⊂ A in fact. �

I [2.37] : Show that for any set A ⊂ X, the point x is in A if and only if every

neighborhood of x contains a point of A.

� This is an important characterization of the closure. We denote the con-
dition

(*) Every neighborhood of x intersects A, i.e. if r > 0 then
Nr(x) ∩A 6= ∅.

by (*). Suppose x ∈ A = A ∪ A′. If x ∈ A, then x satisfies (*) because
x ∈ Nr(x) ∩A for all r > 0. If x ∈ A′, then for all r > 0,

Nr(x) ∩A ⊃ N ′r(x) ∩A 6= ∅,

by the definition of limit points. In this case too, thus, x satisfies (*). We have
thus shown x ∈ A implies x satisfies (*).

Now, let’s show the reverse. Suppose x satisfies (*); we show x ∈ A. If
x ∈ A, the result is immediate, so assume x /∈ A. Then

N ′r(x) ∩A = Nr(x) ∩A 6= ∅,

by, repsectively, x /∈ A and the condition (*). It follows that x ∈ A′ ⊂ A.
�

I [2.38] : If A ⊂ B ⊂ X, show that A ⊂ B.
� By assumption A ⊂ B; by exercise 2.20 A′ ⊂ B′. Thus A = A ∪ A′ ⊂
B ∪B′ = B. �

I [2.40] : Complete the proof of part b) of the above proposition.

� We actually sneakily made this entire proposition into an earlier exercise.
The solution was given earlier (2.37). �

I [2.41] : For a set S ⊂ X, prove that S = S ∪ ∂S. Is it necessarily true that

S′ = ∂S? (Answer: No.)

� Let x ∈ ∂S; we show x ∈ S. By assumption, all neighborhoods of x
intersect S (and SC , but we don’t care). Hence x ∈ S by the above proposition.
Thus

S ∪ ∂S ⊂ S.
Conversely, let x ∈ S. Then all neighborhoods Nr(x) satisfy

Nr(x) ∩ S 6= ∅,
23



chapter 2 solutions

so either x ∈ S (in which case x ∈ S ∪ ∂S) or also

x ∈ Nr(x) ∩ SC , all r.

So either x ∈ S or x ∈ ∂S.
As a counterexample for the last question, let S be a one-point set; then

S′ = ∅ but ∂S = S. �

I [2.42] : For A,B ⊂ X, prove the following: a) A ∪B = A ∪ B b)
⋃
Aα ⊂⋃

Aα

� For a) it will be sufficient to show that (A∪B)′ = A′ ∪B′. The inclusion
⊃ follows because by 2.20

(A ∪B)′ ⊃ A′, (A ∪B)′ ⊃ B′.

If x is a limit point of A∪B, then we must show conversely that x is a limit
point of either A or B. If not there exist deleted neighborhoods N ′r1(x) and
N ′r2(x) such that N ′r1(x)∩A = ∅ and N ′r2(x)∩B = ∅. Set r = min(r1, r2) to
get N ′r(x) ∩ (A ∪B) = ∅, a contradiction since x ∈ (A ∪B)′. We have shown
that (A ∪B)′ = A′ ∪B′. The first part now follows from S = S ∪ S′.

The same proof will not work for arbitrary unions. (Try it!) We do know,
however, by Proposition 3.10 that ⋃

Aα

is the smallest closed set containing
⋃
Aα. Similarly, Aα is the smallest closed

set containing Aα. Then
⋃
Aα is closed and contains each Aα (and thus Aα),

hence contains
⋃
Aα, establishing the inclusion in question. �

I [2.43] : For {Aα} with each Aα ⊂ X, find an example where
⋃
Aα 6=

⋃
Aα.

� An =
(

1
n ,∞

)
for n ∈ N. We have⋃

An = (0,∞);
⋃
An = [0,∞).

�

I [2.44] : Presuming all sets are from X, how do the following sets compare:

a) A ∩B,A ∩B b)
⋂
Aα,

⋂
Aα

c) (A ∪B)
′
, A′ ∪B′ d) (A ∩B)

′
, A′ ∩B′

� In this exercise we shall frequently use the fact that the closure of a set S
is the smallest closed set containing S, which is Proposition 3.16.

a) A ∩B ⊂ A∩B because the latter is a closed set (Why?) containing A∩B,
thus containing A ∩B. They need not be equal: take A = Q, B = I. Then
A ∩B = ∅, but A ∩B = R.

b) The reasoning is the same:
⋂
Aα is a closed set containing

⋂
Aα, hence it

contains
⋂
Aα.

c) (A ∪B)′ = A′ ∪B′; see the solution to 2.42.
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d) (A ∩B)′ ⊂ A′ ∩B′ because by 2.20 we have

(A ∩B)′ ⊂ A′, (A ∩B)′ ⊂ B′.

Equality need not hold: take A = Q, B = I as above.

�

I [2.47] : Is it true in general that if U is open in X, then for any subset S ⊂ X
with U ⊂ S the set U will be open in S? (Yes.)

� Yes. If V = U , then V is open in X by assumption and U = V ∩ S, so
Definition 3.17 applies. �

I [2.48] : Suppose U ⊂ S ⊂ X where S is closed. Is it possible for U to be

open in S if U is not open in X? (Yes. Give examples.)

� For an example of this, see the preceding example in RC (3.18). �

I [2.49] : Suppose U ⊂ S ⊂ X where U is open in S, and S is open. Is U

necessarily open in X? (Yes.)

� By assumption U = V ∩ S, where V is open in X. But S is also open in
X. So U = V ∩ S is also open in X by Proposition 3.4. �

I [2.50] : Suppose U1 and U2 are subsets of S ⊂ X and are relatively open in

S. Prove the following:

a) U1 ∪ U2 is relatively open in S. b) U1 ∩ U2 is relatively open in S.
c) Generalize a) to infinite unions. d) Show that b) fails for infinite intersections.

� a) If U1, U2 are relatively open then there exist open sets V1, V2 ⊂ X so
that Uj = S ∩ Vj for j = 1, 2. Then U1 ∪ U2 = S ∩ (V1 ∪ V2), and V1 ∪ V2

is open in X. Hence U1 ∩ U2 is relatively open in S.
b) Same proof as a), but now use U1∩U2 = (V1∩V2)∩S and note that V1∩V2

is open in X.
c) Same proof as a) by taking infinite unions of V ’s.
d) Take, say, Un =

(
1, 2 + 1

n

)
and S = (0,∞).

�

I [2.51] : Suppose S ⊂ X. Show that ∅ and S are both relatively open in S,

and that ∅ and S are both relatively closed in S.

� All this follows from the formulas

∅ = ∅ ∩ S, S = X ∩ S,

and using the fact that ∅,X are both open and closed (in X). �

I [2.52] : Prove the above proposition.

� A is dense in B iff B ⊂ A iff B ⊂ A∪∂A iff each b ∈ B belongs to A or is
a boundary point of A. Hence, a) and c) are equivalent. The equivalence of a)
and b) is deduced in view of the characterization of the closure in Proposition
3.16. �
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I [2.53] : Give the detailed answers to the three (Why?) questions in the above

proof.

� First question: It is true that if a0 ∈ A, b0 ∈ B, then a0 ≤ b0. Take the
inf over b0 ∈ B to get a0 ≤ inf B. Then take the sup over a0 ∈ A to get
supA ≤ inf B. Thus a ≤ b.

2nd: If {In} is a decreasing sequence of closed bounded intervals, then
the projections onto each axis form a decreasing sequence of closed bounded
intervals too. Those projections are I1n and I2n.

3rd: For any collections of sets {Aα}, {Bα}, it is true that(⋂
α

Aα

)
×

(⋂
α

Bα

)
=
⋂
α

(Aα ×Bα).

If (a, b) belongs to the former then a ∈ Aα for each α, b ∈ Bα for each α, so
(a, b) ∈ Aα ×Bα for each α. Thus (a, b) belongs to the latter set. Similarly, if
(a, b) belongs to the latter set, it belongs to the former. �

I [2.54] : What is the significance of the last example? How about Examples

7.1 and 7.2?

� They show that the hypotheses of closedness and boundedness are neces-
sary. �

I [2.58] : Prove the above corollary.

� Note that
⋂
Fn 6= ∅ by the Nested Bounded Closed Sets Theorem. The

diameter of this intersection is less than or equal to rn−1diam(F1) for all n
(Why?) so the diameter is 0, and the intersection can have at most one point.

�

I [2.59] : In the above, we argued that for arbitrary p ∈ A, there exists a

neighborhood of p such that Nr(p) ⊂ Oαp , and that there also exists a point p′ ∈ X
having coordinates in Q, that is the center of a neighborhood Nβ(p′) of radius β ∈ Q
such that p ∈ Nβ(p′) ⊂ Nr(p) ⊂ Oαp . Give the detailed argument for the existence of

p′ and β with the claimed properties.

� We give the proof when X = R. Fix p ∈ R and choose p′ ∈ Q very close to
p, so close that p′ and p are both contained in a neighborhood Nr(p) which in
turn is so small that N3r(p) is contained in some element Oα of that covering.
(In other words, choose r first, then choose p′.) We can take a rational number
β so that β > |p− p′|, implying p ∈ Nβ(p′). β is to be taken smaller than r.

The collection of neighborhoods Nβ(p′) is countable since it can be indexed
by Q × Q (Why?) and the latter set, as the product of two countable sets, is
countable. (To see that, use a diagonal argument.) �

I [2.60] : Is the set given by
{

1, 1
2 ,

1
3 , . . .

}
⊂ R compact? (Answer: No. Prove

it.)

� No. Consider the covering Un = ( 1
n −

1
100n2 ,

1
n + 1

100n2 ). There is no finite

subcovering since each Un contains precisely one element of that set. �
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I [2.65] : Complete the proof of the above proposition for the cases Rk and C. To

get started, consider the case of R2 as follows. Suppose E,F ⊂ R are connected sets.

Prove that E×F is a connected set in R2. (Hint: Fix a point (a, b) ∈ E×F , and show

that {a} ⊂ E and {b} ⊂ F are connected. Then show that ({a} × F ) ∪ (E × {b}) is

connected.) Extend this result to Rk.

� First, we’ll show that {a} × F ∪ E × {b} is closed. Note that {a} × F
and E × {b} are, because otherwise, given a disconnecting partition as in the
definition, we could project onto the second or first (respectively) factors to
get a partition of F or E, respectively. (A more advanced statement would be
that {a} × F is homeomorphic to F .) The union is connected by 5.10 since
{a} × F ∩ E × {b} is nonempty; it contains (a, b).

So, we now fix a ∈ E, and write

E × F =
⋃
b∈F
{a} × F ∪ E × {b},

while ⋂
b∈F
{a} × F ∪ E × {b} = {a} × F 6= ∅.

Apply Prop. 5.10 again. �
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��

I [3.1] : Show that lim
(

1+i
4

)n
= 0.

� The hint is that
∣∣(1+i

4

)n − 0
∣∣ =

(√
2

4

)n
. Now use logarithms. �

I [3.5] : Show that lim in does not exist. (Hint: Assume it does.)

� Suppose the limit did exist, call it L. Then we can find N ∈ N such that
for n > N , in is really close to L, say |in − L| < 1. By the triangle inequality,
it follows that if n,m > N , we have |in− im| < 2. Taking m = n+ 2, we have
a contradiction (because, for instance, |i− (−i)| = 2). �

I [3.6] : Prove part 2. of the above proposition.

� C and R2 are essentially the same if multiplication is ignored, and the
idea of taking a limit is the same, so this is essentially included in the theorem.

�

I [3.8] : Consider the sequence {xn} in Rk, where xn =
(
x1n, x2n, . . . , xkn

)
.

Show that {xn} is bounded in Rk if and only if each sequence {xjn} is bounded in R
for j = 1, 2, . . . , k. State and prove the analogous situation for a sequence {zn} ⊂ C.
� This follows from the next fact: If xn = (x1n, . . . , xkn), then |xn| ≤
|x1n| + · · · + |xkn|, so if each of the sequences on the right are bounded by
M1, . . . ,Mn, the one on the left is bounded by M1 + · · · + Mn. Same for C.
The converse implication is even easier, because for each k, n, |xkn| ≤ |xn|.

�

I [3.10] : Complete the proof of the above proposition.

� a) is immediate from b) and the fact that limx0 = x0, which is clear. We
now prove c). Suppose limxn = x; we show thaat lim cxn = cx. Fix ε > 0.
There exists M ∈ N such that n > M implies |xn − x| < ε

|c|+1 , which implies

|cxn − cx| < ε, ∀n > M.

This is the definition of lim cxn = cx. Next, e) follows from the reverse triangle
inequality: if limxn = L,

||xn| − |L|| ≤ |xn − L| .
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We can make the right side arbitrarily small for n sufficiently large, and so we
can make the left side small for n large enough. �

I [3.11] : Show that the converse of property e). is true only when x = 0. That

is, show the following: If lim |xn| = 0, then limxn = 0. If lim |xn| = x 6= 0, then it is

not necessarily true that limxn = x.

� For the first part, fix ε > 0. Then we can choose N ∈ N large enough that
n > N implies

|xn| = ||xn|| = ||xn| − 0| < ε,

which is precisely the condition for limxn = 0.
For the other half, consider the sequence (−1)nx where x 6= 0. �

I [3.12] : In the previous proposition, show that property d) is still true when

{xn} is a sequence of real numbers while {yn} is a sequence from Rk or C.

� It is proved precisely the same way as d), except that instead of the Cauchy-
Schwarz inequality, one uses the fact that

|xy| = |x||y|

for x ∈ R, y ∈ Rk or C. �

I [3.13] : Complete the proof of the above theorem by handling the case where

zn 6= 1 for at least one n ∈ N.
� If an, bn are two sequences of complex numbers, then

lim anbn = lim an · lim bn,

by Proposition 2.3d, whenever lim an, lim bn exist. So, using the case of Propo-
sition 2.4 already proved, we find:

lim
zn
wn

= lim zn lim
1

wn
= z

1

w
=
z

w
.

�

I [3.14] : Prove the above corollary.

� Consider {yn − xn}. �

I [3.19] : Prove part b) of the above theorem.

� One can modify the proof of part a) appropriately. Or, use the following
argument. Replace xn by −xn, which is a nondecreasing or increasing sequence.
It is bounded above because xn is bounded below. So by part a)

lim−xn = sup−xn = − inf xn,

which implies

limxn = inf xn.

�

I [3.20] : Show that if x is a limit point of the sequence {xn} in X, then for

any ε > 0, the neighborhood Nε(x) contains infinitely many elements of {xn}.
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� If only finitely many were contained in the neighborhood Nε(x), then for
n sufficiently large |xn − x| ≥ ε, so no subsequence can converge to x. �

I [3.21] : Prove that if a sequence is convergent, the limit of the sequence is

the only limit point of that sequence.

� This follows from Prop. 3.3. �

I [3.23] : Consider a set of points S ⊂ X, and let S′ be the set of limit points

of S. Show that if x ∈ S′, there exists a sequence {xn} ⊂ S for n ≥ 1 such that

limxn = x.

� Pick x ∈ S′. For each n, choose xn ∈ S such that xn ∈ N ′1/n(x), possible

because otherwise x would not be a limit point. Then |xn − x| < 1
n . So, clearly

limxn = x. �

I [3.24] : Suppose {xn} ⊂ S ⊂ X is a sequence convergent to x. Show that

x ∈ S̄, but it is not necessarily true that x ∈ S′.
� If a sequence of elements of S converged to x and x /∈ S̄, there’s a
neighborhood Nr(x) containing x that doesn’t intersect S. (Indeed, we can
even arrange Nr(x)∩S̄ = ∅; this is possible because S̄ is closed, so S̄C is open.)
This being so, no sequence in S can converge to x as it would eventually fall in
Nr(x). The last part is left to the reader (try, e.g. a one-point set). �

I [3.25] : Suppose A ⊂ X is compact and B ⊂ X is closed such that A∩B = ∅.
Then dist(A,B) ≡ inf

a∈A
b∈B

|a− b| > 0. To show this, assume dist(A,B) = 0. Then there

exist sequences {an} ⊂ A and {bn} ⊂ B such that lim |an − bn| = 0. Exploit the

compactness of A to derive a contradiction.

� Note that {an} has a limit point a by the Bolzano-Weierstrass theorem,
since A is bounded; this a must lie in A by the previous exercise since A is closed.
By extracting a subsequence of {an} (and extracting the same subsequence from
{bn}) if necessary, assume lim an = a ∈ A. We will prove that bn converges to
a as well.

Indeed, fix ε > 0. We can find N1 ∈ N such that n > N1 implies |an−a| <
ε/2. We can find N2 ∈ N such that n > N2 implies |an − bn| < ε/2. Thus

|bn − a| ≤ ε/2 + ε/2 = ε, ∀n > max(N1, N2).

This implies that lim bn = a.
Thus, by the previous exercise again, a ∈ B. Thus A∩B 6= ∅, a contradic-

tion. �

I [3.27] : Answer the (Why?) in the above proof, and prove that λ ∈ L.
� For the (Why?) question, choose some limit point L2 ∈ (Λ−1/2,Λ+1/2),
consider a subsequence converging to L2, and take a term xn2 in that sequence
of very high index (bigger than n2 > n1) and such that xn2 ∈ (Λ−1/2,Λ+1/2).
For the second part, repeat the above proof while replacing Λ by λ, or replace
xn by −xn and note that lim sups change into lim infs (proof left to the reader).

�
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I [3.33] : Suppose {xn} is a bounded sequence of real numbers where xn ≥ 0

for n = 1, 2, . . . . Suppose also that lim supxn = 0. Show in this case that limxn = 0.

� By Proposition 3.11a, for any ε > 0, there exists N ∈ N so that n > N
implies xn < ε. This means that |xn| < ε since xn ≥ 0. Thus limxn = 0.

�

I [3.35] : Suppose {xn} is a sequence in X such that |xn+1 − xn | ≤ c rn

for some positive c ∈ R and 0 < r < 1. Prove that {xn} is a Cauchy sequence, and

therefore limxn = x exists.

� Note that for m < n,

|xn − xm| ≤
n−1∑
i=m

|xi+1 − xi| ≤ c
n−1∑
i=m

ri =
crm(1− rn−m)

1− r
.

When m,n are very large, this last expression is small since 0 < r < 1 (use
logarithms), so it can be seen that {xn} is Cauchy. �

I [3.37] : Answer the (Why?) in the above example with an appropriate induction

proof.

� For n = 1, it is clear. Assume the claim for n− 1. Then

s2n = s2n−1 +
1

2n−1 + 1
+ · · ·+ 1

2n
≥ s2n−1 +

2n−1

2n
≥ n

2
+

1

2
.

So the claim follows by induction. �

I [3.38] : Prove the previous theorem.

� The partial sums of
∑

(xj±yj) are the partial sums of
∑
xj plus or minus

the partial sums of
∑
yj . See Proposition 2.3. The strategy is the same for∑

cxj . �

I [3.41] : Suppose |xj | ≥ a rj , where a > 0 and r > 1. Show that
∑∞
j=1 xj

diverges.

� {xj} can’t tend to zero since |xj | is unbounded. �

I [3.42] : For {xj} ⊂ X such that
∑∞
j=1 |xj | converges, show that∣∣∣∣ |x1|−

∣∣∣ ∞∑
j=2

xj

∣∣∣ ∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑
j=1

xj

∣∣∣∣∣∣ ≤
∞∑
j=1

|xj |.

This is the natural extension of the triangle and reverse triangle inequalities to infinite

series.

� For partial sums this really is the triangle inequality. Indeed:∣∣∣∣∣∣|x1| −

∣∣∣∣∣∣
n∑
j=2

xj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣x1 +

n∑
j=2

xj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

xj

∣∣∣∣∣∣ ≤
n∑
j=1

|xj | .

Now let n → ∞ and use the order properties of limits to finish the solution.
�
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I [3.43] : Show that, if |r| < 1, the corresponding geometric series converges to

the sum 1
1−r . To get started, show that sn = 1−rn+1

1−r .

� A simple inductive argument shows that the formula for sn is true. From
that, and from the fact that lim rn+1 = 0 for |r| < 1 (which you may prove
using logarithms) the assertion follows. �

I [3.45] : Complete the proof of the above theorem by showing that for every

ε > 0, there exists N ∈ N such that n > N ⇒ |sn − s| < ε. (Hint: The value of n

must be either even or odd.)

� Set s ≡ sodd = seven. By the proof, it is possible to choose N1 so that
2n > N1 implies |s2n − s| < ε. Choose N2 so that 2n + 1 > N2 implies
|s2n+1 − s| < ε. That we can do this is easily seen, as it is just the definition of
a limit. Any n greater than N ≡ max(N1, N2) is either even or odd so satisfies
|sn − s| < ε. �

I [3.47] : Show that the condition “0 ≤ xj ≤ yj for j = 1, 2, . . .” in The

Comparison Theorem can be weakened to “0 ≤ xj ≤ yj for j ≥ N for some N ∈ N”

and the same conclusion still holds.

� Changing the value of a finite number of the terms of a series doesn’t
affect whether or not it converges, by, e.g., the Cauchy condition. �

I [3.48] : Prove that sM ≤ tn for 2n ≤ M < 2n+1, and that tn ≤ 2s2n for

n ≥ 1.

� We prove the first claim by complete induction on M . Suppose the first
claim true for 1, . . . ,M − 1. (It is true for M = 1.) Then s2n−1 ≤ tn−1 by the
inductive hypothesis. So

sM = s2n−1 + x2n + x2n+1 + · · ·+ xM ,

and
tn = tn−1 + 2n−1x2n−1 .

By the inductive hypothesis, in the first terms on the right of the two equations,
we have s2n−1 ≤ tn−1. It is also true that, since {xn} is nonincreasing,

x2n + x2n+1 + · · ·+ xM ≤ 2n−1x2n ≤ 2n−1x2n−1

which establishes the inductive step. Similarly, the result on tn can be proved
by induction, because

tn − tn−1 = 2n−1x2n−1 ≤ x2n−1+1 + x2n−1+2 + · · ·+ x2n ≤ s2n − s2n−1 .

�

I [3.49] : Show that a given p-series is convergent if and only if p > 1.

� Apply the Cauchy condensation test, and note that
∞∑
j=0

2j(1−p)

converges if and only if p > 1 (by the geometric series). �
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I [3.50] : Suppose
∑∞
j=1 xj and

∑∞
j=1 yj are each series of non-zero terms in

Rk such that

lim
|xj |
|yj |

= L > 0.

What conclusion can you make? What if
∑∞
j=1 zj and

∑∞
j=1 wj are each series of

non-zero terms in C such that

lim
| zj |
|wj |

= L > 0.

What conclusion can you make?

� xj converges absolutely iff yj does. To see this, apply the Limit Compar-
ison Test to |xj | and |yj |. WARNING: One sequence out of {xj}, {yj} may
converge without the other doing so since the sequences are not nonnegative
(indeed, are not even real). Consider ( 1

n , 0) and ((−1)n 1
n , 0) for instance.

The situation for C is similar. �

I [3.51] : Prove part b) of the above proposition. To get started, consider that

a+
j − a

−
j = aj , and a+

j + a−j = |aj |.

� Note that
∣∣∣a+
j

∣∣∣ ≤ |aj | and apply the comparison test. Similarly for a−j .

�

I [3.52] : Prove the above proposition.

� If, say,
∑
a+
j <∞, then

∑
a+
j converges, and so does

∑
a−j =

∑
(a+
j −

aj), and so does ∑
|aj | =

∑
(a+
j + a−j ).

So we get absolute convergence, a contradiction. �

I [3.53] : Answer the (Why?) question in the above proof.

� lim a−k = 0 because lim ak = 0, since
∑
ak converges conditionally. Now

take any subsequence of a−k ; it must also tend to zero. �

I [3.54] : Answer the two (Why?) questions in the above proof, and prove the

above theorem in the case where aj < 0 for at least one j.

� The first one follows since Tn is a sum of various aj (possibly oout of
order), while S is the (infinite) sum of all the aj . The latter follows by reversing
the roles of S and T :

∑
aj is a rearrangement of

∑
j aj
′, and one repeats the

above argument with S and T reversed. The case with negative aj ’s follows by
splitting the sequence into positive and negative parts. �

I [3.55] : Answer the four (Why?) questions from the proof of the previous

theorem.

� (1) B′n = B −Bn. Since the right hand side tends to zero by defini-
tion, limB′n = 0.

(2) Each B′j for j > N is of absolute value less than ε.
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(3) Note that N and the B′i, 1 ≤ i ≤ N are fixed, and each |an−k| → 0
for each k = 1, 2, . . . , N .

(4) The lim inf is always less than or equal to the lim sup but is nonnegative
in this case, since the terms are nonnegative.

�
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��

I [4.1] : Show that the real axis lies in the range of f in the previous example, and

therefore the range of f is all of C.
� For nonnegative real numbers, we can take the (normal, real-valued) square
root. For negative real numbers x, we can take i

√
−x where

√
−x is the ordinary

square root of the positive real number −x. �

I [4.6] : Consider D1 ⊆ R and consider fj : D1 → R for j = 1, 2, . . . , p. Is it true

that if fj is a one-to-one function for j = 1, 2, . . . , p, then the function f : D1 → Rp
given by f = (f1, f2, . . . , fp) is one-to-one? (Yes.) How about the converse? (No.)

� If f1 is one-to-one and x, y ∈ D1 with x 6= y, then f(x) 6= f(y) because
the first coordinates differ. For the converse, take f = (x, x2) with D1 =
R, p = 2; this is one-to-one, but the second coordinate f2 is not. �

I [4.11] : Show that the square root function f : C→ C given in Definition 3.1

is one-to-one. Is it onto? (No.) What can you conclude about the function h : C→ C
given by h(z) = z2? Is it f−1? (No.)

� It is one-to-one because if
√
z1 =

√
z2, then one could square both sides

to get z1 = z2. It is not onto because, for instance, −1 is never returned as a
value. Therefore f and h are not inverses. �

I [4.14] : Prove properties a), b), and e) of the above proposition.

� Let z1 = x1 + iy1, z2 = x2 + iy2. Then

ez1ez2 = ex1eiy1ex2eiy2 = ex1ex2eiy1eiy2 = ex1+x2ei(y1+y2) = ez1+z2

by Prop. 3.6a) of Chapter 1 (basically, this property for purely imaginary num-
bers). This proves a). For b), recall that e0 = 1 by the definition, so

eze−z = ez+(−z) = e0 = 1.

This prove b). b) implies e); zero has no multiplicative inverse. �

I [4.22] : Establish the following properties of the complex sine and cosine
functions. Note that each one is a complex analog to a well-known property of the real
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sine and cosine functions.

a) sin(−z) = − sin z b) cos(−z) = cos z c) sin2 z + cos2 z = 1

d) sin(2 z) = 2 sin z cos z e) sin(z + 2π) = sin z f) cos(z + 2π) = cos z

g) sin(z + π) = − sin z h) cos(z + π) = − cos z i) cos(2 z) = cos2 z − sin2 z

j) sin
(
z + π

2

)
= cos z

� We do a sample. For a), sin(−z) = 1
2i

(
e−iz − eiz

)
= − sin z. For c),

sin2 z + cos2 z =

(
eiz + e−iz

2

)2

+

(
eiz − e−iz

2i

)2

=
e2iz + e−2iz + 2

4
+
e2iz + e−2iz − 2

−4
= 1.

For d),

2 sin z cos z = 2
1

4i
(eiz + e−iz)(eiz − e−iz)

=
1

2i
(e2iz − e−2iz).

e) follows from the corresponding periodicity of the exponential function: ez =
ez+2πi. For g), use the definition and eiπ = −1, so ez+iπ = −ez. �

I [4.25] : Prove the statement at the end of remark 8 above. That is, for

a function f : D → Y and x0 a limit point of D, suppose limx→x0
f(x) = L. If

{xn} is a sequence in D such that xn 6= x0 for all n and limn→∞ xn = x0, then

limn→∞ f(xn) = L. What if the sequence does not satisfy the condition that xn 6= x0

for all n? (In that case, the result fails.)

� Choose ε > 0.
There is a δ > 0 such that if x ∈ N ′δ(x0),

|f(x)− L| < ε.

Also, there exists N such that n > N implies

|xn − x0| < δ,

and since xn 6= x0, we have xn ∈ N ′δ(x0), so we find for n > N ,

|f(xn)− L| < ε,

which proves the claim.
The claim fails if we allow xn = x0 for some n, e.g., with the function f(x)

defined to equal 1 at x = 0 and 0 otherwise. Using the sequence xn ≡ 0, we
have

lim f(xn) = lim 1 = 1,

but (prove this!)

lim
x→0

f(x) = 0.

�
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I [4.28] : Show that the real function f : R \ {0} → R given by f(x) =

exp
(
−1/x2

)
has a limit of 0 as x→ 0, but that the complex function f : C\{0} → C

given by f(z) = exp
(
− 1/z2

)
does not have a limit as z → 0.

� We first prove the claim about the real function f . Fix ε > 0. Choose
X > 0 via X = − ln(ε). Then if x is real and 0 < |x| < δ ≡ 1√

X
, we have

|e−1/x2 | < |e−1/X | = ε.

This proves the claim. For the other half, note that as z approaches 0 along
the imaginary axis, the function f takes arbitrarily large values (i.e. note that

f(iy) = e1/y2 , and as y → 0 this gets arbitrarily large). �

I [4.29] : Answer the (Why?) question in the above proof, and also prove part

b).

� First choose a δj > 0 for each j and fj as in the proof. Then set δ ≡
min δj . This δ works the same for all the fj uniformly. �

I [4.37] : Complete the case A = 0 from the previous example.

� Suppose f is nonnegative and limx→x0 f(x) = 0. Then given ε > 0, we
can find δ > 0 so small that |x− x0| < δ and x ∈ D, x 6= x0 implies

|f(x)− 0| < ε2, so |
√
f(x)− 0| < ε,

which proves the assertion in the example, i.e. that

lim
x→x0

√
f(x) = 0.

�
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I [5.1] : Prove remark 2 above.

� In the case of a limit point, it is clear from the definitions of continuity
and limits that f is continuous at x0 iff limx→x0 f(x) = f(x0) (and the limit
exists). Note that the only reason the hypothesis x0 is a limit point was used
in the remark was because otherwise we have not even defined the limit!1 Now
since limx→x0 x = x0 exists, the remark is clear. �

I [5.5] : Let f : C→ C be given by f(z) = az + b where a, b ∈ C. Show that f

is continuous on C.
� Fix z0 ∈ C and ε > 0. Choose δ ≡ ε

|a|+1 . Then if |z − z0| < δ,

|f(z)− f(z0)| = |a(z − z0)| < |a| ε
|a|+ 1

< ε.

Thus f is continuous at z0. (Note that we added the 1 to |a| to avoid dividing
by zero if a = 0.) �

I [5.7] : Show in the above example that it is impossible to choose δ to be

independent of x0. (Hint: For given ε > 0, consider x0 = 1
n ε and x = 1

(n+1) ε for

sufficiently large n ∈ N.)
� Suppose such a δ existed independent of x0, corresponding to the tolerance
ε > 0. This means that whenever |x− y| < δ, we have |f(x)− f(y)| < ε.

Consider the consecutive terms of an ≡ 1
(n+1)ε . Since lim an = 0, we have

for n greater than some fixed M , |an| < δ
2 . Therefore for n > M , we have

|an − an+1| < δ. By assumption, |f(an) − f(an+1)| < ε, but in fact we have
equality (indeed, f(an)− f(an+1) = −ε) from the definitions. �

I [5.8] : Consider f : (0,∞)→ R given by f(x) = 1
x . Use this example to show

that, as claimed in remark 4 after Definition 1.1, not all continuous functions preserve

convergence.

1Why didn’t we define the limit at a non-limit point? Because it would then be
non-unique. Prove this as an exercise.
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� Take 1
n which converges to 0, though its image under f doesn’t converge

at all. �

I [5.13] : Let f : R → R be given by f(x) = cosx. Show that f is continuous

on R.
� For one approach, this is a simple consequence of the identity cosx =
sin(x+ π

2 ); the details are left to the reader. Alternatively, the reader could use
a similar trigonometric identity as in the text for the cosine (which he or she
could derive using cosx = sin(x+ π

2 ), for instance). �

I [5.21] : Prove that the real exponential function exp : R → R given by

exp(x) = ex is continuous on its domain.

� This exercise is somewhat unusually difficult. Fix x0 ∈ R and ε > 0. Note
that

|ex − ex0 | = ex0 |ex−x0 − 1|.
So, since x0 is fixed, we see that we are reduced to bounding |ex−x0 − 1|. We
shall do this in the lemma.

Lemma 1. When |y| < 1, we have

|ey − 1| ≤ 3|y|.

Proof of the lemma. We have

|ey − 1| ≤
∞∑
n=1

|y|n

n!
≤ |y|

( ∞∑
n=1

|y|n−1

n!

)
.

But the sum in parenthesis is at most
∑∞

n=0
1
n! = e < 3 when |y| < 1. This

proves the lemma. �

Now, return to the original proof. Take δ ≡ min
(
1, ε

3ex0

)
. Then, we have

|ex − ex0 | = ex0 |ex−x0 − 1| < ε

if |x− x0| < ε, by the lemma. �

I [5.22] : Prove the previous proposition.2

� The case of x0 not a limit point is vacuous and uninteresting (all functions
from D are automatically continuous at x0), so we assume x0 is a limit point.
Recall that the definition of continuity at x0 is, in this case, that limx→x0 f(x) =
f(x0) (where we require the existence of the limit).

Now all these properties are immediate consequences of the basic properties
of limits in Chapter 4. For instance, we prove d): if f, g are continuous at x0,
then

lim
x→x0

(f · g)(x) = ( lim
x→x0

f(x)) · ( lim
x→x0

g(x)) = f(x0) · g(x0) = (f · g)(x0),

which implies f · g is continuous at x0. The proofs of all the other assertions
follow this pattern. �

2Proposition 1.9
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I [5.23] : Does property 4 in the above theorem still hold if f has codomain R
while g has codomain Rp?
� Yes. The proof is left to the reader; it is similar to the solution in Exer-
cise 5.22, but taking into account the corresponding property of limits for dot
products. �

I [5.25] : Prove that the following functions f : R→ R are continuous on R.

a) f(x) = c for c ∈ R

b) f(x) = x

c) f(x) = xn for n ∈ Z+

d) f(x) = c0 + c1 x+ c2 x
2 + · · ·+ cn x

n for cj ∈ R and n ∈ N with cn 6= 0.

This establishes that all real polynomials are continuous on R.
� (1) For any ε > 0, choose δ ≡ 1 in the ε-δ definition of continuity.

(2) Choose δ ≡ ε. This can be done regardless of the point x0 at which
one is seeking to establish continuity.

(3) Induction using b) of this exercise and d) of Proposition 1.9. (We
know that x is continuous, hence x2 = x · x, hence x3 = x · x2, and
so on...)

(4) Use b) and c) of Theorem 1.9 and c).
�

I [5.34] : Show that the function f : Rk → R given by f(x) = −|x|2 is

continuous on Rk.
� f(x) = −x · x, and use Proposition 1.9. �

I [5.36] : Prove the following corollary to Proposition 1.15: Suppose f : D→ Y
is continuous at x0 ∈ D where x0 is an interior point of D. Then there exists a δ > 0

such that f is bounded on Nδ(x0).

� There exists a δ > 0 such that f is bounded on Nδ(x0) ∩ D. Reducing δ,
we may assume Nδ(x0) ⊂ D by assumption about x0’s being an interior point;
shrinking the neighborhood will not affect the boundedness of f . Then f is
bounded on Nδ(x0) ⊂ D. �

I [5.37] : Answer the (Why?) question in the above proof, and then prove the

case of the above theorem where Y is a proper subset of R, Rp, or C.
� Let x ∈ f−1(U). Then Nδ(x) ⊂ V by the definition of V as a union of
δ-neighborhoods, and x belongs to the former set, which answers the (Why?)
question.

If f : D→ Y is continuous, we may replace Y by the ambient space R,Rp,
or C and still have a continuous function f . This follows from the definition of
continuity. If V is open in the ambient space, then f−1(V ) is open in D by the
fraction of Theorem 1.16 that was proved. But f−1(V ) = f−1(V ∩ Y) since
the range of f is contained in Y. Thus every set of the form V ∩ Y with V
open has an inverse image open in D, proving the theorem by the definition of
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relative openness (the relatively open sets are precisely of the form V ∩Y for V
open in the ambient space). �

I [5.38] : Note that the condition on U that it be “open in Y” cannot be changed
to “open and a subset of Y.” Trace through the example of the function f : R → Y
given by

f(x) =

{
−1 if x < 0,

1 if x ≥ 0,

with Y = {−1, 1} to see why. In this example, the conditions of the altered theorem

would be satisfied, but the conclusion obviously doesn’t hold for f.

� The only subset of Y that is open in R is the empty set, and the inverse
image of the empty set (namely, the empty set again), is open. Yet f is not
continuous at 0. �

I [5.40] : Show that f : D → Y is continuous on D if and only if f−1(B) is

closed in D for every B closed in Y.
� Take complements with respect to Y. In detail, f is continuous iff A open
in Y implies f−1(A) open in D. This is equivalent to stipulating that when B
is closed in Y, we have f−1(Y−B) open in D, since open sets are precisely the
complements of the closed ones.

But f−1(Y−B) = D− f−1(B). So this in turn is equivalent to stipulating
that if B is closed in Y, we have D− f−1(B) open in D—or equivalently, if B
closed in Y, then f−1(B) closed in D. This last condition is then equivalent to
continuity, which completes the solution. �

I [5.42] : Can you find an example of a discontinuous function f : D→ Y such

that for some A ⊂ D, f(A) ⊃ f(A)?

� Take f : R→ R given by

f(x) =

{
1 if x > 0

0 if x ≤ 0
,

and A to be (0,∞). �

I [5.43] : As claimed in the above proof, verify that K ⊂
⋃
α Vα and that

f(K) ⊂
⋃r
i=1Wαi .

� If x ∈ K, then f(x) ∈ f(K), so f(x) ∈ Wα for some α. This means
x ∈ f−1(Wα). Thus K ⊂

⋃
α f
−1(Wα) ⊂

⋃
α Vα.

For the second part, take images (via f) of the containment

K ⊂ K ∩ (Vα1 ∪ · · · ∪ Vαr) = f−1(Wα1) ∪ · · · ∪ f−1(Wαr).

�

I [5.46] : Let f : (0, 1) → R be given by f(x) = 1
x sin 1

x . Show that f is

continuous on (0, 1). Is f ((0, 1)) compact?

� Continuity is left to the reader. f((0, 1)) is unbounded—consider the
images of 2

(2n+1)π , for instance—so it isn’t compact. �
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I [5.47] : Finish the proof of the above theorem.

� First, pick y ∈ V 6= ∅. There exists x ∈ D such that f(x) = y, so
x ∈ f−1(V ) and f−1(V ) 6= ∅; similarly, f−1(W ) is nonempty. In words, V is
a nonempty subset of the image of f , so its inverse image must be nonempty
too.

Next, if x ∈ f−1(V ) ∩ f−1(W ), then f(x) ∈ V , and f(x) ∈ W by Propo-
sition 1.18. This is a contradiction as V ∩ W = ∅. This proves the first
intersection is empty, and the second is similar. �

I [5.51] : Prove the general case of the intermediate value theorem. Why is it

not as generally applicable as Theorem 1.27?

� Replace f with f−c if f(a) < f(b), or c−f otherwise, and apply the special
case of the theorem already proved (namely, when f(a) < 0 and f(b) > 0).

�

I [5.56] : Prove the above proposition.

� Suppose f is left and right-continuous at x0. Fix ε > 0. Then there exist
δ1, δ2 > 0 so that:

0 ≤ x− x0 < δ1 implies |f(x)− f(x0)| < ε.

and

0 ≥ x− x0 > −δ2 implies |f(x)− f(x0)| < ε.

Take δ ≡ min(δ1, δ2); then if |x− x0| < δ, we have either 0 ≤ x− x0 < δ1 or
0 ≥ x− x0 > −δ2, and in either case:

|f(x)− f(x0)| < ε.

The converse is left to the reader. �

I [5.57] : Let I = [a, b] be an interval of real numbers.

a) Show that any subset J ⊂ I of the form J = [a, b], (c, b], [a, c), or (c, d) is open

in I.

b) Suppose f : I → R is one-to-one and continuous on I. Let m ≡ min{f(a), f(b)},
and let M ≡ max{f(a), f(b)}. Show that f(I) = [m,M ], and that f must

be either increasing or decreasing on I.

c) Suppose f : I → [m,M ] is one-to-one, onto, and continuous on I. For each of

the J intervals described in part a), prove that f(J) is open in [m,M ].

� a) [a, b] = [a, b] ∩ R, (c, b] = [a, b] ∩ (c,∞), [a, c) = [a, b] ∩ (−∞, c),
(c, d) = [a, b] ∩ (c, d). Thus all those four sets are open in I.

b) We will show that f is strictly monotone, and that the minimum and maxi-
mum values of f are therefore m,M . Assuming this, let us prove the claim
in b). We have f(I) ⊂ [m,M ] by definition. f(I) ⊃ [m,M ] by an appli-
cation of the Intermediate Value Theorem. (If f(c) = m, f(d) = M , then
between c and d each value in [m,M ] is taken.)
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Now it is to be shown that f is strictly monotone. Otherwise, since f
is one-to-one, there would be c < d < e ∈ [a, b] such that f(d) > f(c) and
f(d) > f(e), or such that f(d) < f(c) and f(d) < f(e). (Why?)

In either case, one can derive a contradiction; take the former to fix
ideas. Choose some q such that q ∈ (f(c), f(d))∩ (f(e), f(d)). Then there
exist, by the intermediate value theorem, x1 ∈ (c, d) and x2 ∈ (d, e) with
f(x1) = f(x2) = q. Clearly x1 6= x2. This contradicts the assumption that
f is one-to-one.

c) Such an interval is mapped onto an interval of one of those four types (by
the intermediate value theorem).

�

I [5.67] : What if the domain of the function in the previous example is changed

to (−1,∞)? Does the domain matter at all?

� No, because f “blows up” as x→ −1 from the right. �

I [5.71] : Fix α ∈ R and consider the function f : [0, 1]→ R given by

f(x) =

{
xα sin 1

x for 0 < x ≤ 1,

0 for x = 0.

For what values of α is the function uniformly continuous on [0, 1]?

� f is uniformly continuous iff it is continuous. It is not continuous if α ≤ 0,
because if α < 0 it is unbounded near zero (take xn = 2

π(2n+1) , a sequence

tending to zero on which f is unbounded) or if α = 0, it oscillates wildly (take
xn = 2

π(2n±1) or graph it).

If α > 0 the function is uniformly continuous: it is continuous on (0, 1]
clearly, and is continuous at zero since limx→0 f(x) = 0, by the squeeze theo-
rem. �

I [5.72] : What happens if in the statement of the above theorem, you replace

uniform continuity with mere continuity?

� It no longer works. (Try f(x) = 1
x and the sequence { 1

n}.) �

I [5.74] : Show that h−1(V ) = f−1(V )∪g−1(V ) as claimed in the above proof.

Also, answer the (Why?) question posed there.

� x ∈ h−1(V ) iff h(x) ∈ V iff either x ∈ A and f(x) ∈ V or x ∈ B and
g(x) ∈ V . This is equivalent to x ∈ f−1(V ) ∪ g−1(V ).

Answer to the (Why?) question: if f−1(V ) is closed in A (as we know from
continuity), i.e. f−1(V ) = G∩A for a closed set G, then we know that f−1(V )
is a closed set in the ambient space (A being closed). So a fortiori f−1(V ) is
closed in D. Ditto for g−1(V ). �

I [5.75] : In the statement of the pasting theorem, suppose A and B are

presumed to be open sets rather than closed. Prove that the result of the pasting

theorem still holds.
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� Repeat the proof, using the criterion for continuity: a function is continu-
ous iff the inverse image of an open set is open.

�

I [5.76] : Suppose A = (−∞, 1], B = (1,∞), and that h : R = A ∪ B → R is
given by

h(x) =

{
x2 if x ∈ A,
2 if x ∈ B.

Is h continuous at x = 1? What does this exercise illustrate?

� No, h fails to be continuous at x = 1; it illustrates that f and g have to
agree on A ∩B in the pasting theorem. �

I [5.77] : Answer the three (Why?) questions in the proof of the above theorem.

Also, note that there were three places where we claimed a sequence existed convergent

to x0, ξ, and η, respectively. Show that the result of the theorem does not depend on

the choice of convergent sequence chosen in each case. Finally, establish that the f̃

constructed in the above proof is unique.

� Question 1: We know that x0 ∈ D′, because x0 /∈ D. Thus, for each
n ∈ N there exists xn ∈ D ∩N ′1/n(x0). This sequence converges to x0.

Question 2: Cf. Proposition 2.10 (the image of a Cauchy sequence under a
uniformly continuous map is Cauchy).

Question 3: The first two hold for all sufficiently large N because limxn =
ξ, limx′n = η. The second two hold for all sufficiently large N because f̃(ξ) =

lim f(xn), f̃(η) = lim f(x′n).
The assertion about the independence of the convergent sequence follows

from the uniqueness, which we prove: if ξ ∈ D̄ − D̄ pick any sequence in D,
xn → ξ. If f̃ is any continuous extension of f , then (by continuity) f̃(ξ) =

lim f̃(xn) = lim f(xn).
Thus there can be at most one continuous extension of f—the value at ξ

is determined by its values on {xn} ⊂ D, and ξ ∈ D̄ was arbitrary. �

I [5.78] : Prove the above proposition.

� One implication is already known (that uniformly continuous functions can
be extended to their closures). The other follows easily from the fact that D
is compact (the Heine-Borel Theorem) and continuous functions on a compact
set are uniformly continuous. If f extends, the extension must be uniformly
continuous on D, hence on D. �

I [5.81] : Consider the sequence of complex functions fn : N1(0) ⊂ C → C
described by fn(z) = zn for n ∈ N, and the complex function f : N1(0) ⊂ C → C
given by f(z) ≡ 0 on N1(0) ⊂ C. What can you say about limn→∞ fn(z) on N1(0)?

� limn→∞ fn(z) = f(z). This is simply because if z ∈ N1(0) is fixed,
lim zn = 0 (since |zn| = |z|n → 0). �

I [5.85] : For D = {z ∈ C : Re(z) 6= 0}, consider the sequence of functions

fn : D → C given by fn(z) = e−nz for n ∈ N. Find limn→∞ fn(z).
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� The limit function is zero if Re(z) > 0, because |e−nz| = e−nRe(z) and
this last sequence clearly tends to zero. The limit doesn’t exist if Re(z) < 0,
because for such z, fn(z) is unbounded, by a similar calculation of the absolute
values. �

I [5.86] : In a previous exercise, we saw that fn : [0, 1]→ R given by fn(x) = xn

for n ∈ N converged to f(x) =

{
0 for 0 ≤ x < 1

1 for x = 1
. Is the convergence uniform?

� No: the limit function isn’t continuous. �

I [5.87] : Let fn : (0, 1] → R be given by fn(x) =

{
1 for 0 < x ≤ 1

n

0 for 1
n < x ≤ 1.

Note that the functions {fn} are not continuous on (0, 1]. Show that the limit function

f(x) ≡ lim fn(x) is continuous on (0, 1], and the convergence is not uniform.

� The limit function is identically zero (indeed, if x ∈ (0, 1] is fixed, fn(x) =
0 for all large enough n) so is continuous. If the convergence were uniform,
there would exist N so that n > N implied |fn(x)| < 1

2 for all x ∈ (0, 1]. This

is not true if x < 1
n . �

I [5.89] : Suppose in the statement of the previous theorem that Y is presumed

to be a subset of R, Rp, or C. In this case, what else must be presumed about Y in

order for the argument given in the above proof to remain valid?

� Y must be closed in order that the limit function take its values in Y. (If
Y is closed, then limits of convergent or Cauchy sequences in Y belong to Y,
so the proof goes through with no changes.) �

I [5.98] : Prove the above theorem.

� Cf. Theorem 3.8—it implies this result, when applied to the sequence of
partial sums. �

I [5.100] : Consider
∑∞
j=0

zj

j! where z ∈ C.
a) For what values of z, if any, does the series converge?

b) Is the convergence uniform on C?

c) What if z is restricted to {z ∈ C : |z| ≤ r}, for some r > 0?

� It converges for all z by the M-Test. The series

∞∑
j=0

zn

n!

is dominated by, for |z| ≤M ,
∞∑
j=0

Mn

n!
,

which converges (to eM ) as we already know. Thus the original series converges
uniformly on NM (0) for all M , and thus it converges for each z ∈ C.
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The convergence isn’t uniform on C: if it were, then the partial sums
would be uniformly Cauchy on C, so there would exist a very large n such

that |sn+1(z)− sn(z)| < 1, where sn(z) =
∑n

j=0
zj

j! are the partial sums. But

this difference, sn+1(z)− sn(z), is just zn+1

(n+1)! . This difference is unbounded on

C and thus can’t be less than 1 everywhere.
We have answered a), b), and also c) which we proved alongside a) at the

beginning (yes, by the M-Test). �

I [5.101] : Establish the following properties of dD defined above.

a. Show that |dD(x) − dD(y)| ≤ |x − y| for all x, y ∈ X, and therefore dD is
uniformly continuous on X.

b. Show that dD(x) ≥ 0 for all x ∈ X, and that dD(x) = 0 if and only if x ∈ D̄.
� For a), fix x, y ∈ X, pick ε > 0, and pick t ∈ D such that |x− t| <
dD(x)+ ε. (This is possible by the basic properties of infs.) Now by the triangle
inequality, |y − t| ≤ |x− t| + |y − x| < |x− y| + dD(x) + ε. Letting ε → 0
gives |y − t| ≤ |x− y| + dD(x), which means that dD(y) ≤ |x− y| + dD(x).
(This is because t ∈ D and dD(y) involves taking the inf.) Subtracting yields
dD(y)−dD(x) ≤ |x− y|. Interchanging x and y gives dD(x)−dD(y) ≤ |x− y|.
Combining the two, we have:

|dD(x)− dD(y)| ≤ |x− y| ,
which proves a).

For b), the values |x− a| for a ∈ D are nonnegative, so their inf, which is
dD(x), is nonnegative. Next, fix x. Then, dD(x) = 0 iff for all r > 0 there
exists a ∈ D such that |x− a| < r iff for all r > 0 there exists a ∈ D with
x ∈ Nr(a) iff x ∈ D̄. �

I [5.102] : Show that D+ and D− are closed in D, and that D−∩D+ = ∅. This

is sufficient to show that dD−(x) + dD+(x) is never 0, and therefore G is well defined.

� The sets D+,D− are the inverse images under g of closed sets in R, hence
closed. They are the inverse images under g of disjoint intervals, hence are
disjoint.

Note that if dD−(x) + dD+(x), then by the properties of distance functions
we would have x ∈ D− ∩ D+, a contradiction. �

I [5.103] : Prove properties (i), (ii), (iii) listed in the above proof.

� These all follow because dD− is zero on D− and dD+ is zero on D+, since
these distance functions are alwayas nonnegative. �

I [5.104] : Verify that F (x) = f(x) for all x ∈ D, and that |F (x)| ≤M on D.

� The first equality is because the the Fj were so arranged that that the

differences between
∑N

j=1 Fj(x) and f tend to zero on D. The bound |F (x)| ≤
M follows because |Fj(x)| ≤ 1

3

(
2
3

)j−1
M , and we can use the geometric series

to bound it. �
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��

I [6.1] : In the above discussion, we started with the ε, δ-version of the definition

and derived the linear approximation version from it. Beginning with the linear approx-

imation version, derive the ε, δ-version, thus establishing the equivalence of these two

versions of the derivative definition, and hence completing the proof of Theorem 1.2.

� Straight from the definition: if the linear approximation version holds, then

lim
x→a

f(x)− f(a)−A(x− a)

x− a
= 0;

therefore given ε > 0, there exists a δ > 0 such that |x− a| < δ implies∣∣∣∣f(x)− f(a)−A(x− a)

x− a

∣∣∣∣ < ε.

This in turn means

|f(x)− f(a)−A(x− a)| ≤ ε |x− a| ,

for 0 < |x− a| < δ (actually we can put a less than sign but we do not need
to). The inequality trivially holds for x = a, and we have proved that the ε, δ
version holds. �

I [6.3] : Suppose that limx→a
f(x)−f(a)−A (x−a)

|x−a| exists and equals L. Is it

necessarily true that limx→a
f(x)−f(a)−A (x−a)

x−a exists as well? And if so, is it necessarily

equal to L?

� No. Try f(x) = |x|, a = 0, and A = 0. �

I [6.4] : Now suppose that limx→a
f(x)−f(a)−A (x−a)

x−a exists and equals L. Is it

necessarily true that limx→a
f(x)−f(a)−A (x−a)

|x−a| exists as well? And if so, is it necessarily

equal to L?

� No. Try f(x) = x, a = 0, and A = 0. �

I [6.7] : For each f(x) below, use the difference quotient formulation to verify
that the given f ′(a) is as claimed. Then use the ε, δ-version to prove that the derivative
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is the given f ′(a).

a) f(x) = c for D1 = R, constant c ∈ R, f ′(a) = 0 for all a ∈ D1

b) f(x) = x3 for D1 = R, f ′(a) = 3a2 for all a ∈ D1

c) f(x) = x−1 for D1 = R \ {0}, f ′(a) = −a−2 for all a ∈ D1

d) f(x) = xn for D1 = R, n ∈ Z+, f ′(a) = nan−1 for all a ∈ D1

e) f(x) = xn for D1 = R \ {0}, n ∈ Z−, f ′(a) = nan−1 for all a ∈ D1

f) f(x) = sinx for D1 = R, f ′(a) = cos a, for all a ∈ D1

g) f(x) = cosx for D1 = R, f ′(a) = − sin a, for all a ∈ D1

A hint for part f) is to consider the trigonometric identity

sin θ − sinφ = 2 cos

(
θ + φ

2

)
sin

(
θ − φ

2

)
.

� a) The difference quotient version requires no comment. For the ε, δ ver-
sion, choose δ = 1 for any ε.

b) This one is less trivial. Note that

lim
x→a

x3 − a3

x− a
= lim

x→a
x2 + ax+ a2 = 3a2.

For the ε, δ version note that∣∣x3 − a3 − 3a2(x− a)
∣∣ =

∣∣(x− a)(x2 + ax+ a2 − 3a2)
∣∣ .

If we choose δ small and |x− a| < δ, the factor on the right will be very
small, and we get an expression ≤ ε |x− a|.

c) We give only the difference quotient version, leaving the latter to the reader.

x−1 − a−1

x− a
=

a− x
ax(x− a)

→ − 1

a2
as x→ a.

d) Similar to b)
e) Left to the reader
f) By the trigonometric identity, we have

sinx− sin a

x− a
= cos

(
x+ a

2

)
2 sin

(
x− a

2

)
1

x− a
,

and the identity is clear when one recalls that limθ→0
sin θ
θ = 1 (cf. Chapter

4).
g) Cf. part f).

�

I [6.9] : Consider f : R → R given by f(x) = |x|. Show that f is not

differentiable at a = 0. Let g : [0,∞) → R be given by g(x) = |x|. Show that g is

differentiable at a = 0.

� For the first part, show that the left- and right- hand limits of the difference
quotients are different; for the second, note that there is only one way x can

approach zero—from the right. (That is, limx→0+
|x|
x does exist!) �
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I [6.12] : Complete the above proof for parts (a), (c), and (d). Also, determine

the domains of the functions defined in (a) through (d).

� (a) and (c) follow easily from the corresponding properties of limits, cf.
Chapter 4. (d) can be proved most easily using the Chain Rule below but here
is how a direct proof works. The difference quotients are easily transformed into
the form

f(x)g(a)− f(a)g(x)

g(x)g(a)(x− a)
=

1

g(x)g(a)

(f(x)g(a)− f(a)g(a)) + (f(a)g(a)− f(a)g(x))

x− a
,

in which g(x)→ g(a) since g is continuous (cf. Proposition 1.7). In the numer-
ator, we factor (f(x)g(a) − f(a)g(a)) = g(a)(f(x) − f(a)), and (f(a)g(a) −
f(a)g(x)) = f(a)(g(a)− g(x)). Then the definition gives the result. �

I [6.13] : Prove that the following functions f : R→ R are differentiable on R.

a) f(x) = x

b) f(x) = xn for n ∈ Z+

c) f(x) = c0 + c1 x+ c2 x
2 + · · ·+ cn x

n for cj ∈ R and n ∈ N with cn 6= 0.

� a) is easy to see as the difference quotients are all 1. b) follows from
the product rule (part (b) of the theorem) by induction starting with a) of this
exercise. c) follows from the linearity properties ((a) and (c) in the theorem)
combined witb b) of this exercise. �

I [6.14] : For each of the following, verify that the given f ′(a) is as claimed by
using an induction proof.

a) f(x) = xn for D1 = R, n ∈ Z+, f ′(a) = nan−1 for all a ∈ D1

b) f(x) = xn for D1 = R \ {0}, n ∈ Z−, f ′(a) = nan−1 for all a ∈ D1

� Only a) will be verified. Assume it true for n− 1. We have:

d

dx
xn =

d

dx
(xxn−1)

= x
d

dx
xn−1 + xn−1 d

dx
x (product rule)

= x(n− 1)xn−2 + xn−1 (by the induction hypothesis)

= nxn−1.

Since the claim is clear for n = 1, the solution is complete. �

I [6.17] : Consider the function f : D1 → R given by f(x) = xp/q, with
p/q ∈ Q.

a) Find the largest domain D1 for this function. (Hint: The answer depends on p
and q.)

b) For each distinct case determined in part a) above, find the values a ∈ D1

where f is differentiable, and find the derivative.
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� Wlog,1 p and q have no common factor. If q is odd, we can take the
domain to be R or R − {0}, depending upon whether p

q ≥ 0 or not; this is

because q-th roots always exist in R. If q is even, we can define the function as
(xp)1/q and it is thus defined as a real function for x ∈ R+ and for 0 according
as p/q ≥ 0 or not.

Now f q(x) = xp. Differentiate both sides with the Chain Rule, and one
obtains:

qf q−1(x)f ′(x) = pxp−1,

whence
f ′(x) =

p

q
x
p−1− p

q
(q−1)

=
p

q
xp/q−1.

This proof isn’t valid at x = 0, and in fact the function f is differentiable at 0
iff p

q ≥ 1. This is left to the reader, and is simply a matter of looking at the

difference quotients.
The reader should note that the proof was valid for all x 6= 0, even negative

x, in the appropriate domain (if q was odd). �

I [6.18] : Answer the two (Why?) questions in the proof given above, and

complete the proof to the theorem by assuming f(a) to be a local maximum with

f ′(a) > 0. Show that a contradiction results. Complete the similar argument for f(a)

presumed as a local minimum with f ′(a) 6= 0.

� The first (Why?) question is answered by looking at the definition of a
derivative, and noting that f ′(a) < 0.

The second (Why?) question is answered because the quantity in absolute

value (namely,
∣∣∣f(x)−f(a)

x−a − f ′(a)
∣∣∣, is assumed to be smaller than −1

2f
′(a)).

Consequently we have

f(x)− f(a)

x− a
≤
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣+ f ′(a) < 0.

The case of f ′(a) > 0 is a repetition of the same proof, mutatis mutandis,
and we sketch it below. Suppose f has a local maximum at a and f ′(a) > 0.
Then we can find δ > 0 such that 0 < |x− a| < δ implies∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < 1

2
f ′(a),

and, in view of the reverse triangle inequality, this implies that the difference
quotients are positive, so that

f(x)− f(a)

x− a
> 0

for 0 < |x − a| < δ. If a < x < a + δ, then necessarily f(x) > f(a). This
contradicts the assumption that a was a local maximum.

The case of a local minimum is reduced to the proven case by considering
−f . �

1An abbreviation for “Without loss of generality.”
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I [6.21] : Answer the (Why?) question in the above proof.

� Otherwise xm = c and xM = d (or the reverse of that), which means,
since f(c) = f(d) = 0, that the maximum and minimum values of f are both
zero. In this case, f is constant and m = M , in which case the theorem is
trivial. �

I [6.23] : Prove the following result, known as the Cauchy mean value theorem.
Let f, g : [a, b] → R both be continuous on [a, b] and differentiable on (a, b). Then
there exists c ∈ (a, b) such that

[f(b)− f(a)] g′(c) = [g(b)− g(a)] f ′(c).

� Apply the mean value theorem to

h(x) ≡ g(x) (f(a)− f(b))− f(x) (g(a)− g(b)) ,

which takes the same value zero at a and b. In particular, there is c ∈ (a, b)
with h′(c) = 0, and a little rearrangement shows that this establishes the result.

�

I [6.30] : Answer the above (Why?) question. Then, suppose in our definition

for the derivative of a function f : Dk → R we replace A (x − a) with A |x − a| for

some real number A. What is wrong with this proposal? (Hint: Does this definition

reduce to the correct derivative value in the special case k = 1?)

� It needs to be a real number in order that the limit be defined (since f is
a real function). You cannot replace A(x−a) by A |x− a| because that would
distort the definition—the point is to approximate f by a linear function and
A |x− a| isn’t linear. �

I [6.31] : Verify that the above ε, δ-version of Definition 2.1 is in fact equivalent

to it.

� Essentially an algebraic multiplication, multiplying both sides by |x− a|.
Cf. section 1 for the proof where k = 1, which is no different. �

I [6.33] : Prove the above result.

� If A and B were derivatives of f at a, then we would have by algebraic
manipulation:

lim
x→a

A(x− a)−B(x− a)

|x− a|
= 0.

Cf. the proof of Proposition 1.3; one simply takes differences. We can rewrite
this as

lim
x→a

(B −A)(x− a)

|x− a|
= 0.

Now choose x = a+hei for each i, where h is small, and ei are the unit vectors
in Rk. We then have:

(B −A)hei
h

→ 0 as h→ 0,
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so since that expression is independent of h,

(B −A)ei = 0

for all i. It follows that B = A since they are equal on a basis for Rk.2 �

I [6.34] : In Example 2.3, consider the inequality (6.18). Complete the proof

differently by forcing each summand in the parentheses on the left hand side to be less

than ε
2 .

� Take δ ≡ min
(√

ε
2 ,

ε
8

)
. The details are left to the reader. �

I [6.36] : Suppose f : D2 → R is differentiable on all of D2, where D2 =
(a, b)× (c, d). Fix ξ ∈ (a, b), and η ∈ (c, d), and define the functions u and v by

u : (a, b)→ R, where u(x) ≡ f(x, η)

v : (c, d)→ R, where v(y) ≡ f(ξ, y).

Are the functions u and v differentiable on their domains? If so, find their derivatives.

� The derivatives are the partial derivatives, i.e. u′(x) = ∂f
∂x (x, η) and simi-

larly for v′. See the definition. �

I [6.39] : Can you see why the condition that Dk be connected is necessary in

Theorem 2.6?

� Take k = 1, D1 = (0, 1) ∪ (1, 2), f ≡ 1 on (0, 1) and f ≡ 0 on (1, 2).
�

I [6.49] : As you might expect, there is a difference quotient definition for the

directional derivative which is very similar to Definition 2.9. Write this limit expression

and verify that it is consistent with Definition 2.9.

�

f ′u(a) = lim
h→0

f(a + hu)− f(a)

h
.

This limit might exist even if f isn’t differentiable. But if it is differentiable,
then recall that the derivative is ∇f(x), so that

lim
h→0

f(a + hu)− f(a)− f ′(a)(hu)

|h|
= 0.

It is easy to see that this implies

lim
h→0

f(a + hu)− f(a)− f ′(a)(hu)

h
= 0,

and that from this follows

lim
h→0

f(a + hu)− f(a)

h
= f ′(a)u = f ′u(a).

�

2Alternatively, note that Ai = A(ei) = A(ei) = Bi for each i.
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I [6.45] : How would you generalize the statement of the above theorem to

handle the more general case f : Dk → R? How would you prove it? What about

higher-order mixed partial derivatives? For example, under the right circumstances can

we conclude that fyxx = fxyx = fxxy?

� Suppose all the partial derivatives of f : Dk → R up to order n exist
and are continuous. and suppose i1, i2, . . . , in is a sequence of elements (not
necessarily distinct!) of {1, 2, . . . , k}. Let σ be a permutation of {1, 2, . . . , n}.
(A permutation is a one-to-one and onto map of {1, 2, . . . , n} to itself.) Then:

∂nf

∂xinxin−1 . . . xi1
=

∂nf

∂xiσ(n)xiσ(n−1)
. . . xiσ(1)

.

Now, the above theorem says that the operators ∂
∂xi

and ∂
∂xj

commute

under appropriate conditions. Then

∂n

∂xinxin−1 . . . xi1

is one product of such operators, while

∂n

∂xiσ(n)xiσ(n−1)
. . . xiσ(1)

is another such product but with the factors in a different order. It is thus seen
(although to be completely formal this would require an inductive argument)
that, when the n-th order partials exist and are continuous, the factors can be
moved around, and the two mixed differential operators give the same result
when applied to f . The reason is that we can obtain the permutation σ by
a sequence of flips of elements next to each other (the reader familiar with
abstract algebra will recognize this as a statement about the symmetric group
and two-cycles). Each flip of the partial differential operators does not change
the derivative, by the version already proved.

As an example, fxxy = fxyx = fyxx if all the third-order partial derivatives
of f exist and are continuous.3 �

I [6.47] : Prove the above result. Also determine the domains of the functions

defined in parts (a) through (d).

� No different from the case of f : D1 → R, already proved earlier. One
need only repeat the proof, except that the derivatives of f and the arguments
of f are in bold. �

3Note that this implies the second-order partials exist and are continuous too, and
similarly for the first-order partials.
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I [6.48] : Prove that the following functions f : R2 → R are differentiable on
R2.

a) f(x, y) = x

b) f(x, y) = y

c) f(x, y) = xn for n ∈ Z+

d) f(x, y) = yn for n ∈ Z+

e) f(x, y) = cij x
i yj for i, j ∈ Z+ and cij ∈ R

f) f(x, y) =
∑

1≤i,j≤m

cij x
i yj

� a) and b) can be verified directly: the derivatives are [1 0] and [0 1],
respectively. c) and d) follow from (b) in the theorem (with induction on n),
and d) follows from the linearity of the derivative ((a) and (c) of the theorem).

�

I [6.49] : Generalize the previous exercise to the case of f : Rk → R.
� Any polynomial in x1, . . . , xk (where x = (x1, . . . , xk) is differentiable.
The proof is almost the same (use of the product rule and linearity property).

�

I [6.60] : Answer the (Why?) question in the above proof.

� Write C ≡ B −A. Then Cei = 0 for all i, so

c1,1 c1,2 . . . c1,k

. . .
cp,1 cp,2 . . . cp,k




0
...
1
...
0

 =


0
...
0
...
0

 =


ci,1
ci,2

...
ci,k

 ,
where the second (column) matrix has the i-th entry nonzero. Thus, all the
entries of C are zero. �

I [6.62] : Prove the above theorem for the case f : D3 → R. Can you prove it

for the more general f : Dk → R?

� Actually, the proof in RC is slightly incomplete. We prove the general case
of f : Dk → R in detail.

Suppose the partial derivatives fi ≡ ∂f
∂xi

all exist in a neighborhood Nr(a)
of a and they are continuous at a. Write A as the Jacobian matrix of partial
derivatives. We want to prove that A is in fact the derivative.

Then, if we write a = (a1, . . . , ak) and fix a point x = (x1, . . . , xk). We
can write |f(x)− f(a)−A(x− a)| as∣∣∣∣∣f(x1, . . . , xk)− f(a1, . . . , ak)−

k∑
i=1

fi(a)(xi − ai)

∣∣∣∣∣ ,
which we need to bound.
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Fix ε > 0. We can find a δ > 0 such that |x− a| < δ implies |fi(x)− fi(a)| <
ε for each i. (This is by continuity at a, though one must take the min over k
different δi’s for each fi as in the proof.)

For each i, consider the differences

|f(x1, . . . , xi, ai+1, . . . , ak)− f(x1, . . . , xi−1, ai, . . . ak)− fi(a)(xi − ai)| .

By the mean value theorem applied to the function g(x) ≡ f(x1, . . . , xi−1, x, ai+1, . . . , ak)−
fi(a)x, this is at most

|xi − ai| sup
x,|x−a|<δ

|fi(x)− fi(a)| ≤ ε|xi − ai|.

As a result, we have:

|f(x1, . . . , xi, ai+1, . . . , ak)− f(x1, . . . , xi−1, ai, . . . ak)− fi(a)(xi − ai)| ≤ ε |xi − ai| .

If we sum all these equations for each i, we get:

|f(x1, . . . , xk)− f(a1, . . . , ak)−A(x− a)| ≤ 2ε
∑
i

|xi − ai| ≤ 2kε |x− a| .

The only problem is that we have 2kε on the right instead of ε. But this
is not a problem: go back through the proof, and replace ε by ε

2k throughout.
�

I [6.65] : Prove the above theorem.

� By an earlier theorem of this sort, Theorem 2.6, each component fi is
constant (since each component has zero derivative), so f is constant. �

I [6.72] : Show that the function G : Dp → Rm in the above proof is continuous

at y = b. Also, answer the (Why?) question following remark number 2.

� G is clearly continuous everywhere except possibly at b because it is a
quotient of continuous functions and the denominator doesn’t vanish (at y 6=
b). But it’s continuous at b too too since the limit of G(y) as y → b is zero
by the definition of the derivative. The (Why?) question is a consequence of
the definition and Proposition 3.5. �

I [6.72] : Verify (6.35) and therefore that equations (6.36) and (6.37) can be

obtained from the one dimensional Taylor’s theorem with remainder, Theorem 1.22 on

page 252, applied to the function g.

� Write a = (a1, . . . , ak) and similarly for x = (x1, . . . , xk). Recall that
g(t) = f(a + t(x − a)). We saw in the proof of the mean value theorem
(Theorem 3.17) that the derivative was

g′(t) =

k∑
i=1

∂f

∂xi
(a + t(x− a))(xi − ai).

If we compute the n-th derivatives g(n)(t) and prove that they equal (Lnf)(a+
t(x − a), then we will have proved (6.35), and we will be done by the one-
dimensional version of Taylor’s theorem with remainder.
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We do this by induction on n. Clearly, this is true for n = 1, by what has
already been shown. We now need to show that

(4)
d

dt
((Lnf)(a + t(x− a)) = (Ln+1f)(a + t(x− a)).

But

(Lnf)(a + t(x− a)) =
∑
i1,...,in

∂nf

∂xin . . . ∂xi1
(a + t(x− a))

n∏
j=1

(xij − aij ).

Note incidentally in this expression, x is to be regarded as a constant, and t as
a variable. The derivative of the term

∂nf

∂xin . . . ∂xi1
(a + t(x− a))

n∏
j=1

(xij − aij )

with respect to t is∑
in+1

∂n+1f

∂xin+1∂xi1 . . . ∂xin
(a + t(x− a))(xin+1 − ain+1)

n∏
j=1

(xij − aij ),

whence a summation establishes (4). �

I [6.85] : For each f(z) below, use the difference quotient formulation to verify
that the given f ′(z0) is as claimed. Then use the ε, δ-version to prove that the derivative
is the given f ′(z0).

a) f(z) = c for D = C, constant c ∈ C, f ′(z0) = 0 for all z0 ∈ D

b) f(z) = z3 for D = C, f ′(z0) = 3z2
0 for all z0 ∈ D

c) f(z) = z−1 for D = C \ {0}, f ′(z0) = −z−2
0 for all z0 ∈ D

d) f(z) = zn for D = C, n ∈ Z+, f ′(z0) = nzn−1
0 for all z0 ∈ D

e) f(z) = zn for D = C \ {0}, n ∈ Z−, f ′(z0) = nzn−1
0 for all z0 ∈ D

f) f(z) = sin z for D = C, f ′(z0) = cos z0, for all z0 ∈ D

g) f(z) = cos z for D = C, f ′(z0) = − sin z0, for all z0 ∈ D

A hint for part f) is to consider the trigonometric identity

sin θ − sinφ = 2 cos

(
θ + φ

2

)
sin

(
θ − φ

2

)
.

� The proofs are essentially the same as the proofs for the corresponding real
functions, which we did earlier (Exercise 6.7). �

I [6.93] : Let f : C → C be given by f(z) = z3, and consider the points

z1 = 1 and z2 = i as p1 and p2 in the statement of Theorem 3.17 on page 285. Show

that there does not exist a complex number playing the role of q as described in that

theorem.
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� z2 − z1 = i − 1; f(z2) − f(z1) = −i − 1; this means we need to look

for a point w on [1, i] such that 3w2 = −i−1
i−1 = (−i−1)(−i−1)

2 = i, so w2 = i
3 .

Checking the two possible values of w shows neither lies on [1, i]. �

I [6.94] : Using the same line of reasoning as in the last example, and recalling

the fact that ez = ex cos y + i ex sin y, show that d
dz e

z can be inferred to be ez.

� We have u(x, y) = ex cos y, v(x, y) = ex sin y, so the Jacobian matrix is:[
ex cos y −ex sin y
ex sin y ex cos y

]
which is of the appropriate form, and which shows the derivative is ex cosx +
iex sin y = ez. �

I [6.96] : Consider f : C → C given by f(z) = u(x, y) + i v(x, y) where

u(x, y) = x2 +y and v(x, y) = x2 +y2. Infer that the only z ∈ C at which f ′(z) might

exist is z = − 1
2 − i

1
2 .

� The Jacobian is easily computed:[
2x 1
2x 2y

]
,

and if this is to have the appropriate form, 2x = −1 and 2x = 2y, whence the
claim. �

I [6.99] : Show that f : C \ {0} → C given by f(z) = 1
z is differentiable as

suggested in the previous example.

� Use the quotient rule. �

I [6.128] : Suppose the norm of A is less than 1. Guess at
∑∞
j=1 A

j . Can you

verify whether your guess is correct?

� The answer is A(I−A)−1 (as we will see, I−A is invertible). The reason
is that the sum converges (take norms and use the geometric series), and we
have (where the summation starts at zero, not one!)

(I −A)
∞∑
j=0

Aj = I

as one can check by a telescoping argument and the fact that Aj → 0 as
j →∞. �

I [6.134] : Answer the (Why?) question in the above proof. Also, given a neigh-

borhood Nρ(x0,y0) ⊂ Rk+l, show that it contains a product of two neighborhoods

Nr1(x0)×Nr2(y0).

� The (Why?) question follows by looking at the coordinatewise expression
G(x,y) = (x,F (x,y)); this easily implies that the Jacobian of G can be
obtained as in the proof from the “partials” of F . For the latter, take r1 =
r2 ≡ ρ

2 , for instance. The details are left to the reader. �
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��

I [7.2] : In what follows, let f : [a, b]→ R be bounded.

a) Suppose f : [a, b] → R is bounded, and that P = {a = x0, x1, . . . , xn = b}
is a partition of [a, b]. Fix any 0 < j < n, and let P1 = {a = x0, . . . , xj}
and P2 = {xj , . . . , xn = b}, so that P = P1 ∪ P2. Show that SP1∪P2

(f) =

SP1
(f) + SP2

(f), and that SP1∪P2
(f) = SP1

(f) + SP2
(f).

b) Consider any bounded function f : [a, b]→ R and suppose c ∈ (a, b). If P1 =
{a = x0, x1, . . . , xm = c} partitions [a, c] and P2 = {c = xm, . . . , xm+n =
b} partitions [c, b], then P = P1 ∪ P2 is a partition of [a, b]. Show that
SP1∪P2(f) = SP1(f) + SP2(f), and that SP1∪P2

(f) = SP1
(f) + SP2

(f).

� Note that

SP1∪P2(f) =

n∑
i=1

Mi∆xi =

j∑
i=1

Mi∆xi +

n∑
i=j+1

Mi∆xi = SP1(f) + SP2(f).

The case for the lower sums is similar. This proves a). Part b) is just a special
case of a). �

I [7.3] : Prove the above lemma.

� Say P = {x0, . . . , xn}. Then, because mj ≤ f(cj) ≤ Mj for each j, we
have:

SP(f) =
n∑
j=1

mj∆xj ≤
n∑
j=1

f(cj)∆xj ≤
n∑
j=1

Mj∆xj = SP(f),

by the basic properties of sups and infs. The middle term is just SP(f, C).
�

I [7.4] : Complete the proof of the above lemma by showing that SP(f) ≤
SP′(f).

� Note that it is only necessary to consider a ‘one point’ refinement, since
the general case can then be done by induction. To this end, suppose P =
{x0, x1, . . . , xn} and P ′ = P ∪{ξ}, where xk−1 < ξ < xk for some 1 ≤ k ≤ n.
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Then,

SP(f) =
n∑
j=1

mj∆xj = m1∆x1 +m2∆x2 + · · ·+mn∆xn,

and

SP ′(f) = m1∆x1 + · · ·+mk−1∆xk−1 +mleft
k (ξ − xk−1) +mright

k (xk − ξ)
+mk+1∆xk+1 + · · ·+mn∆xn,

where
mleft
k ≡ inf

[xk−1, ξ]
f and mright

k ≡ inf
[ξ, xk]

f.

Therefore,

(5) SP(f)− SP ′(f) = mk∆xk −
(
mleft
k (ξ − xk−1) +mright

k (xk − ξ)
)
.

To complete the proof, we note that

mleft
k = inf

[xk−1,ξ]
f ≥ inf

Ik
f = mk, and similarly, mright

k ≥ mk.

This combined with (5) above yields

SP(f)− SP ′(f) ≤ mk∆xk −
(
mk(ξ − xk−1) +mk(xk − ξ)

)
= mk∆xk −mk∆xk

= 0.

That is,
SP ′(f) ≤ SP(f).

(The reader may have noticed that this is word-for-word the same proof as in
the text with sups changed to infs, inequalities reversed, and Mj changed to
mj .) �

I [7.6] : Suppose f, g : [a, b] → R are both bounded functions such that

f(x) ≤ g(x) on [a, b]. Prove that
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, and

∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx.

� It is clear that SP(f) ≤ SP(g) for each partition P (to see this write out

the sums and note that the M
(f)
j for f are ≤ the corresponding sups M

(g)
j

for g). Now take the inf over all P. This proves the inequality for the upper
integral, and the one for the lower integral is proved similarly. �

I [7.7] : Complete the above proof by writing up the similar argument for the

lower integral. What δ must ultimately be used to establish the overall result?

� We won’t rewrite the whole argument but will suggest another approach:
replace f by −f . Note that SP(f) = −SP(−f), in fact, by elementary prop-
erties of sups and infs (this is essentially the fact that when one multiplies both
sides of an inequality by −1 the sign must be reversed). Now similar identities
follow for the upper and lower integrals, and thus the part of the theorem for
lower integrals is a corollary of the part for upper integrals. We leave the details
to the reader. �
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I [7.10] : For the function of the previous example, show that
∫ 1

0
f(x) dx = 0,

and hence, that f is not integrable on [0, 1].

� If any partition P of [0, 1] is chosen, it follows from the density of the
rationals that mj = 0 for all j so SP(f) = 0. Since P was arbitrary, this
establishes the result. �

I [7.11] : Answer the two (Why?) questions in the above proof.

� This is because the upper and lower integrals are the inf and the sup of
the upper and lower sums (cf. Chapter 2, Proposition 1.14). �

I [7.12] : Verify that
√
f is bounded on [a, b], and answer the (Why?) question

in the above proof.

� f being bounded by M ≥ 0 implies
√
f is bounded by

√
M . The inequality√

b−
√
a ≤
√
b− a for 0 ≤ a ≤ b is elementary (square both sides). �

I [7.13] : Answer the (Why?) question in the above proof.

� The max-min theorem lets us find appropriate aj , bj such that f(aj) = Mj ,
f(bj) = mj . �

I [7.15] : Answer the (Why?) in the above proof, and finish the proof by

handling the case where f is nonincreasing.

� f(a) = f(b) implies f is constant, which answers the (Why?) question.
The nonincreasing case is only (essentially) a repetition of the above proof and
is left to the reader (alternatively, you could use the fact that f is integrable iff
−f is integrable, which is relatively easy to prove from the definitions, and will
be proved in Theorem 2.7 below.) �

I [7.16] : Prove the case with x0 = a or x0 = b, as well as the case of more

than one discontinuity in the above theorem. What can happen if there are infinitely

many discontinuities in [a, b]?

� If x0 = a, take δ very small and note that f is integrable on [a + δ, b] as
a continuous function there, and any upper/lower sums on [a, a + δ] are very
small (less than Λδ). Thus if P is a partition of [a+ δ, b] such that

SP(f)− SP(f) < ε

(where ε > 0 is small) then take P ′ = P ∪ {a}.
Now P ′ is a partition of [a, b], and it follows easily as in the proof that

SP ′(f)− SP ′(f) = SP(f)− SP(f) + δ

(
sup

[a,a+δ]
f − inf

[a,a+δ]
f

)
≤ ε+ 2Λδ.

If δ < ε
2Λ and P and P ′ are then chosen appropriately, we have:

SP(f)− SP(f) < 2ε,

whence the result (though you need to replace ε with ε/2 in the above proof if
you want to come out with ε at the end). The case x0 = b is similar, and the
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case of finitely many discontinuities is an extension of the above with additional
small intervals enclosing each of the discontinuities. If there are infinitely many
discontinuities f need no longer be integrable, e.g. f = χQ. (Cf. Example
1.18). �

I [7.17] : Complete the proof of part (a) by showing that kf is bounded on

[a, b], and that lim
‖P‖→0

SP(k f, C) = k lim
‖P‖→0

SP(f, C).

� f being bounded by M implies kf is bounded by |k|M . The assertion
about the limit follows similarly as in Chapter 4 (or even 3) and the reader
should review those proofs as a hint. �

I [7.18] : Complete the proof of part (b) by showing that f ± g is bounded on

[a, b] and that lim
‖P‖→0

SP(f ± g, C) = lim
‖P‖→0

SP(f, C)± lim
‖P‖→0

SP(g, C).

� f being bounded by M1 and g being bounded by M2 imply f+g is bounded
by M1 +M2. The assertion about the limit follows similarly as in Chapter 4 (or
even 3) and the reader should review those proofs as a hint. �

I [7.19] : Answer the (Why?) question in the above proof, and prove the case

for f−.

� If f is nonnegative on Ij , then Mj = M+
j and mj = m+

j clearly and the

inequality is clear. If f is nonpositive on Ij then M+
j = m+

j = 0 ≤ Mj −mj

(since f+ ≡ 0)). If f takes both positive and negative values on Ij then
M+
j = Mj , m

+
j = max(mj , 0) ≥ mj and the assertion follows in this case too.

To prove that f− is integrable, either modify the given proof or use f− =
f+ − f and the earlier results already proved. �

I [7.20] : Verify that fg is bounded on [a, b], and answer the (Why?) question

in the above proof. In particular, show that Mfg
j ≤M

f
j M

g
j , and that mfg

j ≥ m
f
j m

g
j .

� f ’s being bounded by M1 and g’s being bounded by M2 together imply
that fg is bounded by M1M2.

Note that for x ∈ Ij , (fg)(x) = f(x)g(x) ≤ Mf
j M

g
j . Take the sup over x

to get Mfg
j = Mf

j M
g
j . Note that strict inequality might hold (e.g. f = 1 for

0 ≤ x ≤ 1, 0 otherwise; and g = 1 for 1 < x ≤ 2, 0 otherwise). The case for
the infimums is similar. �

I [7.21] : Prove the above theorem, noting that f(x) = f+(x) − f−(x), and

g(x) = g+(x)− g−(x).

� Now

(6) fg = (f+ − f−)(g+ − g−) = f+g+ + f−g− − (f+g− + f−g+).

Each of f+, f−, g+, g− is integrable. Each product term in the right-hand side
of (6) is integrable by Lemma 2.9, and using the linearity of the integral we get
the theorem. �
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I [7.22] : Complete the proof of part (a) by considering the bounded function

h : [a, b] → R satisfying h(x) ≥ 0 on [a, b]. Show that lim
‖P‖→0

SP(h, C) ≥ 0. Complete

the proof of part (b).

� The completion of the proof of (a) is a simple corollary of the fact that
SP(f, C) ≥ 0 for all P, C. Cf. the corresponding proofs in Chapters 3-4.

Since f(x) ≤ |f(x)| it follows that∫ b

a
f(x)dx ≤

∫ b

a
|f(x)| dx,

by (a). Similarly, since −f(x) ≤ |f(x)|, we have

−
∫ b

a
f(x)dx =

∫ b

a
−f(x)dx ≤

∫ b

a
|f(x)| dx,

which now implies (b). �

I [7.23] :
Prove the above corollary.

� Follows from (b) and (a) of the above theorem. We have:∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx ≤ Λ (b− a).

We used the bound on |f | and the fact that∫ b

a
Λdx = Λ(b− a).

�

I [7.24] : In this exercise we will establish a result known as Jordan’s Inequality.
It will be useful to us in Chapter 9. In particular, we will establish that

∫ π
0
e−R sin θdθ ≤

π
R . From this, we will be able to conclude that limR→∞

∫ π
0
e−R sin θdθ = 0. To begin,

note that
∫ π

0
e−R sin θdθ = 2

∫ π/2
0

e−R sin θdθ. Draw a graph of the sine function on

[0, π/2] to see that sin θ ≥ 2θ
π on that interval. Verify this inequality analytically by

considering the function1 f(θ) = sin θ − 2
π on the interval [0, π/2]. Where does it

achieve its maximum and minimum values? With this inequality established, note that∫ π

0

e−R sin θdθ = 2

∫ π/2

0

e−R sin θdθ ≤ 2

∫ π/2

0

e−2Rθ/πdθ =
π

R
(1− e−R) ≤ π

R
.

� The only part of the solution that remains to be given is the proof that
sin θ ≥ 2θ

π on [0, π/2]. For this, we let f(θ) = sin θ − 2θ
π . Note that f(0) =

f(π/2) = 0. We shall look for the minimum of f on [0, π/2]. The critical point
is where cos θ = 2

π . The second derivative test shows that f ′′(θ) = − sin θ < 0
on (0, π/2), so the critical point (whose exact location is irrelevant) is necessarily
a maximum. In particular, the minima of f on this interval must occur at the
endpoints. So f(θ) ≥ 0 on [0, π/2], proving the claim. �

1There is a typo in the text here; it should read sin θ − 2θ
π

.
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I [7.26] : Prove the above theorem. Show also that if c1 ≤ c2 ≤ · · · ≤ cm are

points each lying within [a, b], then
∫ b
a
f(x) dx =

∫ c1
a
f(x) dx +

∫ c2
c1
f(x) dx + · · · +∫ b

cm
f(x) dx.

� We start with the case m = 1 (which is the above theorem). The equality
for upper and lower integrals was already proved (Lemma 1.15). Since f is
known to be integrable on [a, b], and also on each subinterval (Lemma 2.13),
we can replace the upper and lower integrals by integrals. The general case of
m ∈ N follows by induction. �

I [7.28] : If F is an antiderivative for f : [a, b] → R on [a, b], is it unique? If

F and G are two antiderivatives for f on [a, b], how might they differ? Show this by

proper use of Definition 2.16.

� Any two antiderivatives of the same function differ by a constant since if
F,G are antiderivatives, (F −G)′ ≡ 0. Conversely if F is an antiderivative of
f , so is F + c for any constant c. �

I [7.29] : Answer the (Why?) question in the above proof. If f has more than

one antiderivative on [a, b], does it matter which one you use in evaluating the integral

of f over [a, b]?

� The existence of the appropriate points cj ∈ Ij follows from the mean
value theorem. It doesn’t matter which antiderivative you use, because any two
differ by a constant (cf. the solution to the previous exercise). �

I [7.33] : For a function f : R → R satisfying the conditions of the above

definition, show that the sum
∫ c
−∞ f(x) dx+

∫∞
c
f(x) dx is independent of the choice

of c.

� This is a simple consequence of the elementary properties of the integral.
First, note that∫ ∞

a
f(x)dx−

∫ ∞
b

f(x)dx = lim
d→∞

∫ d

a
f(x)dx− lim

d→∞

∫ d

b
f(x)dx

= lim
d→∞

(∫ d

a
f(x)dx−

∫ d

b
f(x)dx

)
= lim

d→∞

∫ b

a
f(x)dx

=

∫ b

a
f(x)dx.

There is a similar identity for integrals from −∞ to a, b and the proof is
similar. The identity runs∫ a

−∞
f(x)dx−

∫ b

−∞
f(x)dx =

∫ a

b
f(x)dx.

We leave the proof to the reader.
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Now, fix c1, c2 ∈ R, and consider the difference:∫ c1

−∞
f(x) dx+

∫ ∞
c1

f(x) dx−
∫ c2

−∞
f(x) dx−

∫ ∞
c2

f(x) dx.

This is the difference of two expressions defining
∫∞
−∞ f(x)dx for c1, c2. We

must prove that it is zero. But, by what we have just seen, it is (with obvious
notation) (∫ c1

−∞
−
∫ c2

−∞

)
+

(∫ ∞
c1

−
∫ ∞
c2

)
=

∫ c1

c2

+

∫ c2

c1

= 0.

�

I [7.40] : Find lim
n→∞

∑n
j=1

1
ne

j/n.

� It equals ∫ 1

0
exdx = e− 1.

�

I [7.42] : Complete the above proof by establishing that f is bounded on [a, b].

� Choose N so large that |fN (x)− f(x)| < 1 for all x ∈ [a, b]; then if M is
a bound for fN , M + 1 is a bound for f by the triangle inequality. �

I [7.44] : Let fn : [−1, 1] → R be a sequence of functions given by fn(x) =
nx2

n+1+x .

a) Find lim
n→∞

fn(x).

b) Is the convergence uniform?

c) Compute lim
n→∞

∫ 1

−1
fn(x) dx and

∫ 1

−1

(
lim
n→∞

fn(x)
)
dx. Are they equal? Why?

� The limit is x2. In fact,

fn(x) = x2 n

n+ 1 + x
.

The convergence is uniform on [−1, 1] because n
n+1+x → 1 uniformly for x ∈

[−1, 1] (This can be proved from the identity

n

n+ 1 + x
− 1 =

−1− x
n(n+ 1)

,

as it is easy to see that this difference tends to zero uniformly for x ∈ [−1, 1].)
The rest is left to the reader. �

I [7.45] : Prove the above corollary.

� Theorem 3.10 applied to the partial sums. �

I [7.46] : If the function F : [a, b] → Rp in the above definition is given by

F (x) =
(
F1(x), . . . , Fp(x)

)
where Fj : [a, b] → R for 1 ≤ j ≤ p, show that each Fj

satisfies F ′j = fj on [a, b], and is therefore an antiderivative of fj on [a, b] for 1 ≤ j ≤ p.
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� This follows because the derivative of a vector-valued function is taken
componentwise. That is, if F = (f1, . . . , fp), then F ′ = (f ′1, . . . , f

′
p). �

I [7.47] : Prove the above theorem.

� In this exercise, as in many of the ones below, the result follows their
analogues on the real line (see also Exercise 7.46). �

I [7.49] : Parametrize the circle described in the previous example so that it is

traversed in the clockwise direction.

� x(t) = (R cos(−t), R sin(−t)) for t ∈ [0, 2π]. �

I [7.50] : Suppose C in Rk is the straight line segment which connects two

points p 6= q in Rk. Find a parametrization of this “curve.”

� Write x : [0, 1]→ Rk given by x = xq + (1− x)p. �

I [7.55] : Confirm the claim in the above example. Then reparametrize the

curve so that an imagined particle traverses it three timesmore slowly than the original

parametrization.

� It is easy to see that ˜̄x is indeed a reparametrization of C because the map
x → 2x is a bijection of [0, π] onto [0, 2π], and the assertion of the speeds is
shown by taking derivatives and using the chain rule. �

I [7.57] : Prove the above theorem. Begin by considering the case where C is

a smooth curve.

� This is simply a matter of checking the definitions. For instance, the
assertions of the terminal and initial points are clear: x−C starts at the terminal
point of C and ends at the initial point of C. The piecewise differentiability
follows from the Chain Rule. �

I [7.59] : Let f, g : Dk → R be continuous on the open set Dk, and suppose C

is a contour in Dk. Show the following:

a)
∫
C

(f ± g)(x) dxj =
∫
C

f(x) dxj ±
∫
C

g(x) dxj for each 1 ≤ j ≤ k.

b) For any α ∈ R,
∫
C

α f(x) dxj = α
∫
C

f(x) dxj for each 1 ≤ j ≤ k.

� Consequences of the linearity property of the regular integral. For instance,
if C is a smooth curve with parametrization x : [a, b]→ Dk, then

∫
C

(f + g)dxj =

∫ b

a
(f + g)(x(t))x′j(t)dt

=

∫ b

a
f(x(t))x′j(t)dt+

∫ b

a
g(x(t))x′j(t)dt

=

∫
C
fdxj +

∫
C
gdxj .

�
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I [7.61] : Prove the above theorem, considering first the case where C is a

smooth curve.

� By the change-of-variables theorem and the chain rule, where g is as in
Definition 4.14,∫

C
f(x1, . . . , xk)dxj =

∫ b

a
f(x1(t), . . . , xk(t))x

′
j(t)dt

=

∫ d

c
f(x1(g(u)), . . . , xk(g(u))(xj ◦ g)′(t)dt

=

∫
C
f(x̃1, . . . , x̃k)dx̃j .

This proceeds under the assumption C is smooth and the general case follows
by linearity. �

I [7.63] : Prove the above theorem.

� Consider the real-valued function G(t) = F (x(t)). The derivative at t is

∇F (x(t)) · dx
dt

= f(x) · dx
dt
,

Now apply the fundamental theorem of calculus and the above discussion,
getting ∫

C
f(x) · dx = G(b)−G(a) = F (x(b))− F (x(a)) .

�
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��

I [8.1] : Prove the above proposition.

� We prove a), b), and c) by unwinding the definitions. First, it is clear that∫ b

a
(z1w1(t) + z2w2(t)) dt =

∫ b

a
z1w1(t)dt+

∫ b

a
z2w2(t)dt,

since Re(z + w) = Re(z) + Re(w), and Im(z + w) = Im(z) + Im(w), for
z, w ∈ C. It remains only to prove that∫ b

a
z1w1(t)dt = z1

∫ b

a
w1(t)dt,

the same argument applying to the other integral.
This is a long but straightforward computation. Let us write z1 = x1 + iy1

and w1(t) = c1(t) + id1(t), where x1, y1, c1(t), d1(t) are real-valued. We have,
then, in view of the linearity property of the real integral:∫ b

a
z1w1(t)dt =

∫ b

a
(x1 + iy1)(c1(t) + id1(t))dt

=

∫ b

a
(x1c1(t)− y1d1(t)) + i (y1c1(t) + x1d1(t)) dt

=

∫ b

a
(x1c1(t)− y1d1(t)) dt+ i

∫ b

a
(y1c1(t) + x1d1(t)) dt

= x1

∫ b

a
c1(t)dt− y1

∫ b

a
d1(t)dt+ i

(
y1

∫ b

a
c1(t)dt+ x1

∫ b

a
d1(t)dt

)
= (x1 + iy1)

(∫ b

a
c1(t)dt+ i

∫ b

a
d1(t)dt

)
= z1

∫ b

a
w1(t)dt.

�

I [8.2] : Prove the above proposition.
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� Take real and imaginary parts and apply the real change-of-variables for-
mula. �

I [8.3] : Prove the above proposition.

� Take real and imaginary parts and apply the usual fundamental theorem
of calculus. �

I [8.4] : Verify that the parametrized circle Cr(z0) is a smooth curve, and that

the default parametrization described in Definition 1.6 associates a counterclockwise

direction to the traversal of Cr(z0).

� The function is differentiable (clear) and the derivative is ireit, which never
vanishes, so the curve is smooth. To verify the counterclockwise direction, try
drawing it (noting that eit = cos t+ i sin t). �

I [8.6] : Verify that the parametrized segment [z1, z2] is a smooth curve with

initial point z1 and terminal point z2.

� The curve is differentiable and the derivative w.r.t. t is z2 − z1 6= 0. The
assertion about the initial and terminal points is clear. �

I [8.8] : Verify that the parametrized polygonal contour P = [z0, z1, . . . , zN ] is

a contour.

� It is the catenation of several smooth curves such that the endpoint of one
coincides with the starting point of the next. �

I [8.9] : Let E ⊂ X be open and connected. Show that E is contour-connected.
To do this, fix any point w0 ∈ E, and consider the set

A = {w ∈ E : There exists a contour x : [a, b]→ E such that x(a) = w0 and x(b) = w}.

(In fact, one can choose a rectangular contour.) Show that A is open. If A is all of

E, there is nothing else to prove, so assume there exists w1 ∈ B ≡ E \ A. Show that

B is also open, that Ā ∩ B = A ∩ B̄ = ∅, and hence that E = A ∪ B is therefore

disconnected, a contradiction. Hence E = A is contour-connected.

� We carry out the proof in detail. Fix w0 ∈ E and consider A = {w ∈
E : w can be connected to w0 by a rectangular contour in E }. First we show
that A is open. If w1 ∈ A, select r such that Nr(w1) ⊂ E (which we can do,
E being open). I claim that Nr(w1) ⊂ A.

We have a rectangular contour C connecting w0 to w1. by the definition of
A Now if w2 ∈ Nr(w1), then we can connect w1 to w2 by a rectangular contour
C ′ in the neighborhood Nr(w1) ⊂ E. (Draw a picture in the 2-dimensional
case; here you only need one horizontal and one vertical line segment.) The
catenation (C,C ′) joins w0 to w2. Whence, w2 ∈ A. Since w2 was chosen
arbitrarily in a small neighborhood of w1, we see that A is open.

Now letB = {w ∈ E : w can’t be connected to w0 by a rectangular contour in E }.
Clearly B ⊂ E as well, and A ∪ B = E, A ∩ B = ∅. We will show that B is
open as will, which will imply (A being nonempty, as we shall see) that B is
empty by connectedness.
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Fix w3 ∈ B. There is a neighborhood Nρ(w3) ⊂ E. Now w3 can’t be
connected to w0 by assumption. Suppose w4 ∈ Nρ(w3) and w4 /∈ B, i.e.
w4 ∈ A so we can join w0 to w4 by (say) C1, a rectangular contour. Then
we can join w4 to w3 by another rectangular contour C2 in Nρ(w3) since they
both lie in that small disk. (C1, C2) connects w0 to w3, whence w3 ∈ A, a
contradiction.

We’ve shown that A is open and B is open. We now show A is nonempty by
showing w0 ∈ A. There exists a neighborhood Nδ(w0) ⊂ E. Pick w5 ∈ Nδ(w0)
and consider the contour ([w0, w5], [w5, w0]) ⊂ Nδ(w0) ⊂ E.

By the connectedness of E, B is empty so A = E. �

I [8.10] : In this exercise, you will show that if a set E ⊂ X is contour-connected,

then it is connected. To do this, suppose E ⊂ X has the property that for every pair

of points w1, w2 ∈ E there exists a contour x : [a, b] → E such that x(a) = w1 and

x(b) = w2. Assume E = A∪B where A and B are nonempty and Ā∩B = A∩B̄ = ∅.
Choose w1 ∈ A and w2 ∈ B, and a contour x : [a, b] → E such that x(a) = w1 and

x(b) = w2. Argue that x
(
[a, b]

)
is a connected subset of E, and that x

(
[a, b]

)
is

completely contained in either A or B, a contradiction.

� The continuous image of a connected set such as [a, b] is connected. In
particular, x([a, b]) is connected. But if the image of x intersected both A and
B, we’d have then x([a, b]) = A ∩ x([a, b]) ∪ B ∩ x([a, b]), which contradicts
connectedness. The rest of the solution is given in the exercise itself. �

I [8.11] : Suppose D ⊂ C is open and connected. Define the open set D0 ≡
D \ {z0} where z0 ∈ D. Show that for any pair of points w1, w2 ∈ D0, there exists

a contour z : [a, b] → D0 such that z(a) = w1 and z(b) = w2. Therefore D0 is

connected. Convince yourself that this is also true for Rk for k ≥ 2, but not for R.
� A rectangular contour (and remember that we can restrict outselves to
rectangular contours!) passing through z0 can be pushed off slightly to avoid
z0 while remaining in D. Try drawing a picture.

For R, the set R−{0} is not even connected, by contrast! There is no path
joining −1 to 1 that does not pass through zero (this is the intermediate value
theorem). �

I [8.12] : Suppose D ⊂ C is open and connected. Define the open set Dn ≡
D \ {z1, z2, . . . , zn} where zj ∈ D for 1 ≤ j ≤ n. Show that for any pair of points

w1, w2 ∈ Dn, there exists a contour z : [a, b] → Dn such that z(a) = w1 and

z(b) = w2. Therefore Dn is connected. Convince yourself that this is also true for Rk
for k ≥ 2, but not for R.
� Induction, using the preceding exercise. �

I [8.15] : Let C be the circle described in the previous example. Show that for

any integer n 6= 1,
∮
C

dz
(z−z0)n = 0.
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� A simple computation with the usual parametrization for the circle:∮
C

dz

(z − z0)n
=

∫ 2π

0

ireit

rneint
dt =

∫ 2π

0
ir1−nei(1−n)tdt = 0.

�

I [8.16] : Let Log : C \ {0} → C be the principal branch of the logarithm,

i.e., Log(z) = ln |z| + i Arg(z), where 0 ≤ Arg(z) < 2π. Let C1 be the parametrized

unit circle centered at the origin, and let Γε be the contour parametrized by zε :

[ε, 2π− ε]→ C where zε(t) = ei t. Note that since Γε ⊂ C \ [0,∞) for every ε > 0, the

function Log(z) is continuous on Γε. Compute
∮
C1

Log(z) dz ≡ lim
ε→0

∫
Γε

Log(z) dz. What

happens to the integral defined above if a different branch of the logarithm is used, say,

log : C \ {0} → C given by log(z) = ln |z|+ i Ãrg(z), where −π ≤ Ãrg(z) < π?

� The contour is parametrized by eit, the Log of which is it. (Note that we
took Arg(z) between 0 and 2π.) Thus the integral over Γε becomes (since the
derivative of eit is ieit) ∫ 2π−ε

ε
i2teitdt,

which you can evaluate by integration by parts. (Cf. the supplementary exercises
in Chapter 7.) �

I [8.17] : Complete the proof of the above proposition by proving a), and proving

b) for contours and more general subdivisions of C.

� Part a) follows easily from Proposition 1.1. The general case of b) follows
by induction, or by a simple direct proof paralleling the one given. �

I [8.21] : Prove the above proposition. Clearly it also holds if Λ is replaced by

any M > Λ.

� With C parametrized by z : [a, b]→ C and setting z(t) = x(t) + iy(t), we
have: ∣∣∣∣∫

C
f(z)dz

∣∣∣∣ =

∣∣∣∣∫ b

a
f(z(t))z′(t)dt

∣∣∣∣
≤
∫ b

a

∣∣f(z(t))z′(t)
∣∣ dt

≤ Λ

∫ b

a

∣∣z′(t)∣∣ dt
= Λ

∫ b

a

√
x′(t)2 + y′(t)2dt

= ΛLC .

�

I [8.22] : Prove the above proposition. Refer to Proposition 1.3 on page 389.
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� For definiteness suppose C is a smooth curve parametrized by z and z̃ ≡
z ◦g where g is an increasing continuously differentiable function with g(c) = a,
g(d) = b. Now by Proposition 1.3 we have:

∫
C
f(z)dz =

∫ b

a
f(z(t))z′(t)dt

=

∫ b

a
f(z(g(t)))z′(g(t))g′(t)dt

=

∫ d

c
f(z̃(s))z̃′(s)ds.

�

I [8.23] : Prove the above claim.

� Make the standard change-of-variables; see Chapter 7. �

I [8.24] : In the above example, suppose S connects two points of C by going

through the exterior of C. Does the conclusion of the example still hold? That is, does

the integral of f along S still cancel out the integral of f along −S?

� If the function is continuous there, yes. The proof requires no modifi-
cations, as it never used the fact that S was contained in the interior of S.

�

I [8.25] : In the above example, suppose the contour C is not simple and S is

a contour that connects two points of C. Does the conclusion of the example still hold

now?

� Simplicity was never used. The conclusion holds. �

I [8.27] : Show that
∮
4N

f(z0) dz =
∮
4N

f ′(z0) (z − z0) dz = 0 by parametrizing

4N and computing.

� We prove a more general result: If4 is a triangle and z∗ ∈ C is a constant,
then:

∮
4
zdz =

∮
4
z∗dz = 0.

From here the conclusion of the exercise follows easily. (The integral
∮
4N

f ′(z0) (z−

z0) dz splits into two.) First, let 4 = [z0, z1, z2, z0]. Using the standard
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parametrizations, we have:∮
4
zdz =

∫
[z0,z1]

zdz +

∫
[z1,z2]

zdz +

∫
[z2,z0]

zdz

=

∫ 1

0
(z0 + (z1 − z0)t)(z1 − z0)dt+

∫ 1

0
(z1 + (z2 − z1)t)(z2 − z1)dt

+

∫ 1

0
(z2 + (z0 − z2)t)(z0 − z2)dt

= z0(z1 − z0) + z1(z2 − z1) + z2(z0 − z2) +
1

2

(
(z1 − z0)2 + (z2 − z1)2 + (z0 − z2)2

)
= 0,

once you expand all the terms out properly.
The second integral

∮
4 z
∗dz can be computed by noting that

∫
[z0,z1] z

∗dz =

z∗(z1 − z0). Repeat the same for the other line segments, and add all three
terms. It is easier than the first.

Aside: Later, in Proposition 2.10, we will see a faster way of proving the
result of this exercise. �

I [8.28] : Fill in the details of the above example.

� A picture is better than words here. �

Figure 1. The figure in the solution to Ex. 8.28

I [8.29] : In the above proof, where in cases 2 and 3 is the result of case 1

implicitly used? Extend the corollary to the case where f : D → C is differentiable on

D \ {p1, p2, . . . , pn} for p1, p2, . . . , pn ∈ D.
� We give a sketch of the generalized case. The extension follows by dividing
the first triangle into a lot of small sub-triangles whose interiors contain at most
one of the “bad” points p1, . . . , pn. Then use the above case to show that
the integrals on each small sub-triangle is zero, add the integrals over the sub-
triangles to get theintegral over the big triangle, and the integral over the big
triangle is zero. �

I [8.32] : Prove the above theorem for a general closed contour C.
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� Let C = (C1, . . . , Cm) be a closed contour parametrized by z : [a, b]→ C.
We want to define the function F as in the proof of the theorem:

F (s) ≡
∫ s

a

z′(t)

z(t)− z0
dt.

But here z′ may not be continuous at certain points (or may not even exist).
Fortunately, there is a way around this: We use the fact that C is piecewise

smooth. It is straightforward but slightly technical. Note that there exist sub-
intervals [aj , bj ], 1 ≤ j ≤ m, overlapping only at endpoints, on the interiors of
which z′ is continuously differentiable (and nonzero). We order the sub-intervals
in the natural way, i.e. so that bj = aj+1. Now fix s ∈ [a, b] and say the interval
[ad, bd] ⊂ [a, s] is the last interval wholly contained in [a, s], or bd is the largest
bj less than or equal to s. Now F is defined to be

F (s) ≡

 d∑
j=1

∫ bj

aj

z′(t)

z(t)− z0
dt

+

∫ s

bj

z′(t)

z(t)− z0
dt.

Then it is easy to see that F is continuous (which needs only checking at

endpoints bd, which is easy). Also, by the same calculation, eF (s)

z(s)−z0 has zero

derivative on the interior of these intervals [aj , bj ] and must be constant on
them. By continuity, it is constant everywhere, and the same reasoning as in
the proof now shows that the winding number is an integer. �

I [8.34] : Answer the (Why?) question in the above proof, and complete the

proof by establishing the result for the case where C is a closed parametrized contour.

� The (Why?) question is answered by noting that the winding number is
an integer. The proof really never used the smothness of C (indeed, the bound∣∣∫
C fdz

∣∣ ≤ supC |f |LC is still valid for contours) so that no modifications are

necessary. �

I [8.35] : In Example 2.5 on page 405, we found that the winding number

nC(z0) for a counterclockwise circle C around its center z0 was 1. Consider this same

contour again. For a ∈ Int(C), show that nC(a) = 1. What if a ∈ Ext(C)?

� The winding number is constant on the connected set Int(C) (cf. Propo-
sition 2.7) and must be 1 on Int(C) since it is 1 on z0. It is zero on Ext(C)
by Proposition 2.8. �

I [8.37] : Prove the above proposition.

� Assume C is smooth; the general case follows easily by piecing one smooth
curve after another. Parametrize C by z : [a, b]→ C. We have:∫

C

f(z) dz =

∫ b

a
f(z(t))z′(t)dt =

∫ b

a
(f ◦ z)′dt

= F (z(b))− F (z(a)) = F (zT )− F (zI).

This proof should not be new. �
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I [8.38] : Prove the above corollary.

� In a), we have zT = zI , and the result follows from the fundamental
theorem of calculus. The second part is just as straightforward. �

I [8.40] : Let D ⊂ C be star-shaped and suppose f : D → C is such that f ′ ≡ 0

on D. Show that f ≡ c on D for some c ∈ C.
� This is actually true even if D is only connected. It is slightly easier in this
case though. Let z0 be a star-center, pick z ∈ D, define G(t) = f((1−t)z0+tz),
use the chain rule to show the derivative G′ vanishes, show that G is constant
as a result, and deduce f is constant on rays emanating from z0, hence on D.

�

I [8.41] : Prove the above corollary.

� This follows via the same proof but using the modification of the triangle
lemma where the function is allowed not to be differentiable at one point (but
still required to be continuous). �

I [8.42] : Prove that the conclusion to Corollary 2.15 still holds even for a finite

collection p1, . . . , pn of excluded points.

� One need only show that the triangle lemma still holds. For this, cf.
Exercise 8.29. �

I [8.44] : Prove (i) ⇔ (ii) in the above theorem.

� If integrals are path-independent, then the integral on a closed contour
starting and ending at z0 is the same as the integral around the constant path
at z0, which is zero. Conversely suppose that integrals around closed contours
are 0. If C1, C2 are two closed contours starting and ending at the same points
then C ≡ (C1,−C2) is closed, so f integrates to zero along C, whence the
integrals on C1 and C2 are equal. �

I [8.47] : Complete the proof of the above corollary by showing that, if w0 ∈
Ext(C1), then w0 ∈ Ext(C2), implying nC2

(w0) = nC1
(w0) = 0.

� Since C2 ⊂ Int(C1), it follows that C2 ∩ Ext(C1) = ∅, so Ext(C1) ⊂
Ext(C2). (Note that Ext(C1) is a connected unbounded subset of C contained
in C − C2, and appeal to the Jordan curve theorem.) The assertion follows.

�

I [8.49] : Show that the function g described in the proof of the above theorem

is continuous on D and differentiable on D \ {z0}.
� Continuity is clear everywhere except possibly at z0, but we see that it is
continuous there too since the limit of g at z0 is f ′(z0) by definition. Differen-
tiability outside z0 follows from the quotient rule. �

I [8.50] : How do we know a disk such as D′ as described in each of the cases

of the above proof exists? What type of region is D′ in each case? To answer these

questions, let Cr be a circle such that it and its interior are contained in the open set

D ⊂ C. If r and z0 are the circle’s radius and center, respectively, show that there
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exists a neighborhood Nρ(z0) such that Cr ⊂ Nρ(z0) ⊂ D. (Hint: Assume otherwise,

that is, that for all ρ > r we have Nρ(z0) ∩ DC 6= ∅. In particular, show that there

exists wn ∈ Nr+ 1
n

(z0) ∩DC .)

� Suppose Cr and its interior are contained in D and D ⊂ C is open. Then
by definition Nr(z0) ⊂ D. I claim that there is ρ > r with Nρ(z0) ⊂ D as well
(the reader may wish to draw a picture).

If there is no ρ > r such that Nρ(z0) ∩ DC = ∅, then choose ρ = r + 1
n

for each n. There exists thus a sequence of points xn ∈ DC ∩Nr+ 1
n

(z0). Each

point is not contained in the interior of Cr because that interior is contained in
D. Thus it is seen that the sequence of points xn is contained between Cr and
Cr+ 1

n
. The sequence thus forms a bounded set which has a limit point by the

Bolzano-Weierstrass Theorem. This limit point must be on Cr, and it lies in
DC since the latter is a closed set. Thus Cr ∩DC 6= ∅, a contradiction. �

I [8.4] : Use Corollary 4.2 to prove Gauss’s mean value theorem. If f : D → C is

differentiable on the open set D ⊂ C, and Cr(z0) and its interior are contained within

D, then f(z0) = 1
2π

∫ 2π

0
f(z0 + r ei t) dt.

� We have, by Corollary 4.2 and the usual parametrization of a circle::

f(z0) =
1

2πi

∮
Cr(z0)

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

ieitf(z0 + eit)

eit
dt,

whence the result. �

I [8.58] : Prove the general case.

� As the general case similar but more tedious, we present the basic idea in
a more abstract form. Let G be a differentiable complex function on C − {0}
whose derivative is continuous there. Suppose that for every compact K not
containing zero and ε > 0, there is a δ > 0 such that z0 ∈ K and |z − z0| < δ
implies ∣∣G(z)−G(z0)−G′(z0)(z − z0)

∣∣ ≤ ε |z − z0| .

This means that G is uniformly differentiable on compact sets. Let f : C → C
be continuous. Define for z /∈ C

FG(z) =

∫
C
f(ζ)G(ζ − z)dζ.

I claim then that FG is differentiable on C− C and

F ′G(z) = −
∫
C
f(ζ)G′(ζ − z)dζ.

The proposition will then follow in the general case by induction by taking for
G a power of 1

z . It is left to the reader to check the uniform differentiability
assumption holds for such G.
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We now sketch the proof of the claim. Write:

FG(z)− FG(z0) + (z − z0)

∫
C
f(ζ)G′(ζ − z0)dz

=

∫
C
f(ζ)(G(ζ − z)−G(ζ − z0)− ((z0 − z)G′(ζ − z0))dζ.

We can bound this; supposing |f(ζ)| ≤M on C, we get that∣∣∣∣FG(z)− FG(z0) + (z − z0)

∫
C
f(ζ)G′(ζ − z0)dζ

∣∣∣∣
is bounded by

MLC sup
ζ∈C

∣∣G(ζ − z)−G(ζ − z0)− ((z0 − z)G′(ζ − z0))
∣∣ .

Taking z very close to z0 the term in the absolute value is uniformly less than a
small multiple of |z − z0| (which equals |ζ − z − (ζ − z0)| for each ζ ∈ C), by
uniform differentiability. Thus we see that∣∣∣∣FG(z)− FG(z0) +

∫
C
f(ζ)G′(ζ − z0)dζ

∣∣∣∣
is bounded by a small multiple of |z − z0| for z close to z0, which proves the
assertion on the derivative. �

I [8.59] : Prove the above corollary to Proposition 4.11.

� f is differentiable in the interior of each simple closed curve by Proposition
4.11. It is thus differentiable at any z0 ∈ D, since z0 is in the interior of a small
circle centered at z0. �

I [8.60] : Prove the above corollary using Proposition 4.11.

� When n = 0 this is just Cauchy’s formula. The general case follows by
induction, differentiating under the integral sign from Proposition 4.9 (the n!
comes from the fact that the n-th differentiation adds the factor n). Finally the
bounds follow from the formula and the ML inequality (the standard estimate
for integration on contours). In fact, the integrand is bounded by Λ

rn+1 , as is

easily seen. �

I [8.63] : If u : D2 → R is harmonic on D2, then u is C∞(D2). In fact,

u = Re(f) for some differentiable complex function f : D → C, where D is D2 as

represented in C. Note that this result only holds locally, even if D is connected. To

see this, consider u : D2 → R given by u(x, y) = ln(x2 + y2) where D2 = R2 \ {0}.
Determine the harmonic conjugates of u. How do they differ from each other? What

is the domain of the resulting differentiable complex function f?

� Note that ln(x2 + y2) = Re(Log(z2)) = 2Re(Log(z)). The harmonic
conjugate can thus be taken to be 2Arg(z). Note that it is not continuous
(let alone differentiable) in the domain of u. The harmonic conjugate can be
defined locally as a branch of 2arg(z), but not globally in a continuous manner.

�
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I [8.64] : For fixed z, show that lim
n→∞

∮
Cr

fn(ζ)
ζ−z dζ =

∮
Cr

f(ζ)
ζ−z dζ, and thereby

complete the proof of the above theorem.

� This proof uses essentially the same idea as the proof that integration
of a limit of a uniformly convergent sequence of functions is the limit of the
integrals (Chapter 7). Fix ε > 0 and take N so large that n > N implies
|fn(z)− f(z)| < ε if z ∈ Cr. Note that∣∣∣∣∣∣

∮
Cr

fn(ζ)

ζ − z
dζ −

∮
Cr

f(ζ)

ζ − z
dζ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
Cr

fn(ζ)− f(z)

ζ − z
dζ

∣∣∣∣∣∣
≤
∮
Cr

|fn(ζ)− f(z)|
|ζ − z|

dζ

≤
∮
Cr

ε

minζ∈Cr |ζ − z|
dζ

=
2πε

minζ∈Cr |ζ − z|
.

This gives the appropriate result, since ε > 0 was arbitrary. (If you want, replace

ε by
minζ∈Cr |ζ−z|ε

4π to come out with < ε at the end.) �

I [8.65] : Let f : D → C be continuous on the open set D ⊂ C, and suppose

f is differentiable on D \ {p} for some p ∈ D. Show that f is differentiable on all of

D. What if f is presumed initially to only be differentiable on D \ {z1, z2, . . . , zn} for

z1, z2, . . . , zn ∈ D?

� We first prove a stronger version of Morera’s theorem, where the integral
is only required to vanish on triangles. The proof of Morera’s theorem required
only that

∮
4 f(z)dz = 0 for each triangle 4 in D. If you do not believe this,

note that as in the theorem we need only show that f is differentiable in a
neighborhood of each z0 ∈ D, if z0 is arbitrary—in particular, we can reduce
to the star-shaped case. We can still prove that F ′(z) = f(z) as in the proof
of Theorem 2.14 (cf. also Corollary 2.15). In fact, the same reasoning works,
except in that theorem the triangle lemma was used to show that

∮
4 f(z)dz = 0

for each 4. Here we have assumed it. In particular:

Theorem. If f is continuous on an open subset of C and its integral vanishes
on all triangles, then f is differentiable.

So here, to complete the solution, we need only to show that
∮
4 f(z)dz = 0

for each triangle 4 in D. We may assume D is a disk (since we need only prove
that f is differentiable in each disk). Now the assertion follows from the corollary
to the triangle lemma. The reader should note that we assumed D was a disk
to ensure that the interior of a triangle in D lay in D. �
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��

I [9.1] : Show that when R = 0 the associated power series centered at ξ0 converges

absolutely at ξ0, but diverges for ξ 6= ξ0.

� Any power series centered at ξ0 converges absolutely at ξ0, since all but
possibly one of the terms are zero! If a power series with R = 0 converged
outside ξ0, then we would have R > 0 by the definition, contradiction. �

I [9.2] : Suppose
∑∞
j=0 aj (ξ−ξ0)j is a power series centered at ξ0 that converges

for ξ1 6= ξ0. Show that the series converges absolutely for any ξ such that |ξ − ξ0| <
|ξ1 − ξ0|, that is, for any ξ ∈ Nr(ξ0) where r ≡ |ξ1 − ξ0|.
� Indeed, by the definition of R as a supremum it follows that R ≥ |ξ1 − ξ0|,
so we can apply the theorem about convergence inside the neighborhood of
convergence. �

I [9.3] : Show that a power series converges uniformly on any compact subset

of its neighborhood of convergence.

� If K ⊂ Nr(x0) is compact, then I claim that in fact K ⊂ Ns(x0) for some
s < r; by the theorem, this implies the exercise. To prove the claim, note that
f : K → R defined by f(x) ≡ |x− x0| is continuous on K and consequently
assumes its upper bound s on K (which s is consequently less than r), and the

claim K ⊂ Ns(x0) is now clear with our choice of s. �

I [9.4] : Consider the complex power series given by
∑∞
j=0

1
j2 z

j . Use the ratio

test to show that R = 1, and that the series converges absolutely at every point on its

circle of convergence C1(0).

� A little computation (specifically, the fact that limj→∞

(
j+1
j

)2
= 1) shows

the limit of the ratios of successive terms zj

j2
and zj+1

(j+1)2
is z, so the ratio test

now applies. The limit of successive ratios is < 1 in absolute value precisely
when |z| < 1, and the limit of successive ratios is > 1 in absolute value precisely
when |z| > 1. The series thus converges in the unit disk and diverges outside
the closed unit disk. The fact that the series converges absolutely on the circle
of convergence follows by the convergence of

∑
j

1
j2

. �
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I [9.5] : Can you find an example of a power series that does not converge at

any point on its circle of convergence?

� Take ∑
j

zj ;

the ratio test shows the radius of convergence is one, as in the previous exercise,
yet it does not converge for any z with |z| = 1, as the terms zj do not tend to
zero. �

I [9.6] : Suppose f : C \ {1} → C is given by f(z) = 1
z−1 . Find a power series

representation for f centered at z = 2, and determine its radius and neighborhood of

convergence.

� Write

f(z) =
1

1 + (z − 2)
=
∞∑
j=0

(−1)j(z − 2)j

by the geometric series; we omit the proof that the radius of convergence is
one, which follows from the ratio test (or the geometric series). �

I [9.7] : Choose any real α > 0. Can you find a power series having radius of

convergence equal to α?

� ∑
j

α−jzj .

�

I [9.9] : Answer the (Why?) question in the above proof. Then prove the general

case; to do so, let y = x− x0 so that f(x) =
∑∞
j=0 aj(x− x0)j becomes f(x0 + y) =∑∞

j=0 ajy
j . Then rescale by letting y = Rt. This gives f(x0 +Rt) =

∑∞
j=0 ajR

jtj .

� Since x > 0, |1− x| = 1−|x| = 1−x. This answers the (Why?) question.
The details of the rescaling are left to the reader, as the procedure is already
given in exercise itself. The idea is simply to move x0 to zero by making a
translation, and then make a dilation (scaling) to make the radius one. �

I [9.10] : What conditions need be presumed in the above theorem in order to

conclude that lim
x→(x0−R)+

f(x) =
∑∞
j=0 aj(−R)j?

� By making the transformation x→ −x, this exercise just becomes a new
form of the theorem; we need ∑

aj(−R)j

to converge. (This is a sufficient, but not necessary, condition.) �

I [9.11] : Prove part 1 of the above theorem.

86



chapter 9 solutions

� This follows because we can add series, and thus power series, term-by-
term. In particular, in the domain where both series converge:∑

an(z − z0)n +
∑

bn(z − z0)n =
∑

(an(z − z0)n + bn(z − z0)n)

=
∑

(an + bn)(z − z0)n.

�

I [9.12] : Use induction to prove inequality (9.5) for j ≥ 1.

� Suppose the inequality true for indices smaller than j (i.e. we use complete
induction). Then we have, in view of the inductive assumption

|bj | ≤
1

|a0|

j∑
k=1

|ak| |bj−k| ≤
1

|a0|

j∑
k=1

|ak|
2j−k

|a0|

(
M

r

)j−k
,

so using

|ak| ≤
M |a0|
rk

yields (since M ≥ 1)

|bj | ≤
1

|a0|

j∑
k=1

2j−k

|a0|
M |a0|
rk

(
M

r

)j−k
≤ 1

|a0|

(
M

r

)j j∑
k=1

2j−k ≤ 1

|a0|

(
2M

r

)j
.

�

I [9.18] : Complete the proof of the above theorem by extending the result

to higher-order derivatives. Also, show that the original power series and its claimed

derivative have the same radius of convergence by applying Theorem 1.9 on page 461.

� The proof for higher-order derivatives is simply induction now, since the
case of first-order derivatives has already been established. The fact that the
radius of convergence of

∑
j jaj(z − z0)j−1 is the same as that of

∑
j ajz

j

follows from limj |j|1/j = 1. �

I [9.20] : Prove the uniqueness in the above theorem.

� Evaluate the n-th derivatives at x0 for each n to evaluate the coefficient
of (x− x0)n. �

I [9.27] : Show directly that the radius of convergence of the series in (9.20) is

1 except in one important case. What is that case?

� If c is not a nonnegative integer, then the successive ratios of the coeffi-
cients can be computed to have limit 1. Indeed:(

c
n+1

)(
c
n

) =
c− n
n+ 1

→ 1 as n→∞.

Therefore, by the ratio test, the radius of convergence is one. If c is a nonnega-
tive integer, the coefficients become zero for n sufficiently large, and the radius
of convergence is infinite. �
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I [9.31] : Prove the above theorem. (Hint: Consider arbitrary ξ1 ∈ Nr(ξ0).

Choose ρ = 1
2

(
r − |ξ1 − ξ0|

)
, and consider Nρ(ξ1). Show that f has Taylor series

representation on Nρ(ξ1).)

� We know that f has a Taylor series representation f(ξ) =
∑
cj(ξ − ξ0)j

centered at ξ0 that converges in the disk of radius r. Now consider

f(ξ1 + t) = f(ξ0 + (ξ1 − ξ0 + t)) =
∑

cj(ξ1 − ξ0 + t)j .

If we prove that this can be rearranged legitimately into a power series in t
converging in a neighborhood of zero, then we will be done. Indeed,∑

cj(ξ1 − ξ0 + t)j =
∑
j

∑
k≤j

cjt
k

(
j

k

)
(ξ1 − ξ0)j−k.

For |t| < ρ, it is easy to see that this converges absolutely:∑
j

∑
k≤j
|cj | |t|k

(
j

k

)
|ξ1 − ξ0|j−k ≤

∑
j

|cj | (|ξ1 − ξ0|+ ρ)j

by the binomial theorem, and this last converges absolutely because of the power
series

∑
cju

j has radius of convergence r and |ξ1 − ξ0| + ρ < r. By absolute
convergence, we can rearrange the series into a power series

∑
djt

j (collecting
coefficients for each tj) that therefore converges for |t| < ρ. �

I [9.34] : Prove the above proposition.

� A complex analytic function can always be expanded locally in a Taylor
series, by Taylor’s theorem for complex functions (Theorem 2.3). Hence it is
analytic on its domain. �

I [9.38] : Show that g is differentiable on D.

� Indeed, this follows because g can be expressed in a power series. �

I [9.40] : Prove the above corollary.

� Part a) is immediate from the preceding theorem. Part b) follows from it
by applying it to h ≡ f − g. �

I [9.43] : Prove the above proposition.

� This follows because the processes of taking the limit and integration can
be interchanged in the case of uniform convergence (valid by the previous propo-
sition). Cf. Theorem 3.10 of Chapter 7; that result applies to real integrals, but
the generalization for complex line integrals is a corollary. �

I [9.44] : Establish the uniqueness of the bk terms in the Laurent series repre-

sentation (9.22) by carrying out the integral
∮
C

f(ζ)
(ζ−z0)−k+1 dζ for any fixed k ≥ 1.

�∮
C

f(ζ)

(ζ − z0)−k+1
dζ =

∞∑
j=0

aj

∫
C

(ζ − ζ0)j+k−1dζ +
∞∑
j=1

∫
C
bj(ζ − ζ0)−j+k−1dζ
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If k = 1, this integral is 2πia0. If k > 1, the integral is 2πibk (by an easy
integral computation over a circle that you have already probably done before
in another form). Hence the {bk} are uniquely determined by f . �

I [9.51] : Consider the function f : C \ {0} → C given by f(z) = e1/z. Show

that the associated singularity of f ◦ g at z0 = 0 is removable, and hence that f has a

removable singularity at infinity.

� The Laurent expansion of f(1/z) is that of ez near zero, namely∑
zj/j!

which shows that f(1/z) has a removable singularity at z = 0, hence f has a
removable singularity at ∞. �

I [9.53] : Complete the proof of part a) of the above theorem.

� If f can be extended to a holomorphic function on a neighborhood of
z0, this extension has a Taylor expansion centered at z0 (with, obviously, no
negative powers of (z − z0)); this must be the Laurent expansion of f around
z0 by uniqueness, and so f has a removable singularity at z0. �

I [9.57] : Prove Theorem 6.3.

� Without loss of generality, assume z0 = 0. Suppose f0(z) =
∑

j≥0 cjz
j is

the Taylor expansion ; then f has Laurent expansion
∑

j≥−N cj+Nz
j . We need

to compute cN−1; this is the residue of f as it is the coefficient of z−1. But in
fact

(N − 1)!cN−1 = f
(N−1)
0 (z0)

by term-by-term differentiation. This proves the theorem. �

I [9.60] : Prove the following: Suppose the functions f and g are differentiable

at z0, f(z0) 6= 0, g(z0) = 0, and g′(z0) 6= 0. Then the function given by f(z)
g(z) has a

simple pole at z0, and Res
(
f(z)
g(z) , z0

)
= f(z0)

g′(z0) .

� We can write g(z) = (z − z0)h(z), where h(z) is analytic and h(z0) =
g′(z0) by dividing out a factor from the power series. Now

q(z) =
f(z)

h(z)

is analytic in a neighborhood of z0 with a Taylor series expansion whose low-

est term is f(z0)
g′(z0) . Thus the lowest term in the Laurent expansion of f/g is

1
z−z0

f(z0)
g′(z0) . This proves the assertion about the residue and the simple pole.

�
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��

I [10.2] : Verify the claims made above abou tthe distance function d.

� Indeed, this follows from F̂ ’s being a one-to-one correspondence. For
instance, if d(z1, z2) = 0, then∣∣∣F̂−1(z1)− F̂−1(z2)

∣∣∣ = 0

so that F̂−1(z1) = F̂−1(z2), implying z1 = z2. This establishes one property of
d. The others (e.g. the triangle inequality) are proved similarly. �

I [10.7 and 9] :

� A line in C is given by an equation ax + by = c, and this can be put in
the form cz + dz̄ = e. Under the transformation z → 1/z,

c
1

z
+ d

1

z̄
= e

which becomes

cz̄ + dz = e|z|2.

It is easy to see that this is an equation of a circle (if e 6= 0) or a line (if e = 0).
�

I [10.10] : Prove the above. Begin by computing the derivative of T (z).

� The derivative may be computed via the quotient rule; it is easy to see
that T is differentiable wherever the denominator does not vanish. In addition,
it is easy to check that T is continuous on Ĉ because linear maps z → az +
b and inversion z → 1

z all are (exercise). To prove that T is a one-to-one

correspondence, we can consider an equation az+b
cz+d = w and use elementary

algebra(!) to solve for z in terms of w uniquely. Indeed, doing so will prove
that the inverse map is an LFT itself. �

I [10.11] : Suppose T is an LFT. If A ⊂ Ĉ is a line, show that T (A) is a line or

a circle. When will it be a circle? If B ⊂ C ⊂ Ĉ is a circle, show that T (B) is a line

or a circle. When will it be a line?
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� It is enough, by Proposition 2.2, to establish this for the special cases of
translation, rotation/dilation, and inversion. These have already been handled
(cf. Exercises 10. 5, 10.6, 10.7, 10.9). A line and not a circle is unbounded, so
the image will be a line when the original object contains −d/c.

We can give a direct proof as follows. A set defined by an equation (with
not all constants zero)

a+ bz + cz̄ + dzz̄ = 0

is either a line (if d = 0) or a circle (if d 6= 0). It is easy to check directly that
an LFT transforms such an equation into another of the same form by clearing
denominators. �

I [10.12] : Prove the above.

� Direct computation:

aa
′z+b′

c′z+d′ + b

ca
′z+b′

c′z+d′ + d
=
a(a′z + b′) + b(c′z + d′)

a′z + b′ + d(c′z + d′)

and it is clear that the latter can be written as an LFT after simplification.
�

I [10.15] : Show that the equation (w−w1)(w2−w3)
(w−w3)(w2−w1) = (z−z1)(z2−z3)

(z−z3)(z2−z1) implicitly

defines an LFT given by w = T (z) that maps z1, z2, and z3 to w1, w2, and w3,

respectively. The expression on each side of the equality implicitly defining w in terms

of z is called a cross ratio.

� Define the LFTs A : z → (z−z1)(z2−z3)
(z−z3)(z2−z1) and B : z → (z−w1)(w2−w3)

(z−w3)(w2−w1) . It is

clear that the implicit map z → w is given by B−1 ◦ A, which is an LFT by
Proposition 2.3. The fact that the three points are mapped to each other is
easy to check from the definitions. �

I [10.18] : Show that the mapping constructed above is onto the open unit disk.

Also, show that the imaginary axis is mapped onto the unit circle.

� Suppose w is such that |w| < 1. We will find a z in the right half-plane
with 1−z

1+z = w. Indeed, this says that

1− z = w(1 + z), or (w + 1)z = 1− w, or z =
1− w
1 + w

.

That is, the map f is its own inverse! We need to check then that if w ∈ D1(0),
then f(w) is in the right half-plane. But, if w = a+ ib,

Re(z) = Re

(
1− w
1 + w

)
= Re

(
(1− a− ib)(1 + a− ib)

(1 + a)2 + b2

)
.

We need only check that the numerator has positive real part. This real part is
1− a2 − b2 > 0 since |w| < 1. It is easy to see by the same reasoning that the
points that go to the unit circle (i.e. with a2 + b2 = 1) are precisely those that
lie on the imaginary axis (i.e. those z with Re(z) = 0). Note that the point −1
is covered by the “point at infinity,” which by abuse of notation can be taken
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on the imaginary axis (or any other line, which must “pass through” the point).
�

I [10.21] : Show that any LFT is conformal on C if c = 0, or on C \ {−dc } if

c 6= 0.

� The derivative can be computed by the quotient rule: if T (z) = az+b
cz+d , then

T ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad− bc
(cz + d)2

6= 0

because ad− bc 6= 0. �

I [10.22] : Prove the above proposition.

� Use the chain rule. �

I [10.23] : Show that the mapping f is conformal. Also show that it maps its

domain onto the upper half-plane.

� The derivative is computed by the chain rule, d
dz z

π/α = (π/α)zπ/α−1.
�

I [10.28] : Show that Tz0 is conformal on U. Also, verify that T−z0 is the inverse

mapping for Tz0 , and that Tz0 is one-to-one.

� LFTs are conformal on their domain and always one-to-one. The composi-
tions T−z0 ◦Tz0 , Tz0 ◦T−z0 can be computed directly; we leave it to the reader.

�

I [10.30] : Let D ⊂ C be a simply connected open set. If f : D → C is

differentiable and C ⊂ D is a closed contour, show that
∮
C
f(z)dz = 0.

� Immediate consequence of the general Cauchy integral theorem, Theorem
3.3 of Chapter 8. �

I [10.31] : Show that a star-shaped region is simply connected.

� Let C ⊂ D be a closed contour in the star-shaped region D. Now by
definition, if w /∈ D, then

nC(w) =
1

2πi

∫
C

dz

z − w
= 0

by Cauchy’s theorem for star-shaped reasons, because 1
z−w is analytic in D.

�

I [10.32] : Use the maximum modulus theorem to finish the proof of the above

lemma. Prove also that |f ′(0)| ≤ 1.

� Indeed, g(0) = f ′(0), so since |g(z)| ≤ 1 for all z ∈ U , the last claim is
clear. �

I [10.34] : In the statement of the above theorem, why cant the set D be the

whole complex plane? What would that imply?
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� That would imply that there exists f : C → U which is surjective, hence
nonconstant; this contradicts Liouville’s theorem. �
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