NL-based Query Refinement and Contextualized
Code Search Results: A User Study

Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, Greg Mallet
Department of Computer Science
Montclair State University
Montclair, NJ, USA
{hillem, roldanvegam1, failsj, malletg]} @mail.montclair.edu

Abstract—As software systems continue to grow and evolve, lo-
cating code for software maintenance tasks becomes increasingly
difficult. Source code search tools match a developer’s keyword-
style or natural language query with comments and identifiers in
the source code to identify relevant methods that may need to be
changed or understood to complete the maintenance task. In this
search process, the developer faces a number of challenges: (1)
formulating a query, (2) determining if the results are relevant,
and (3) if the results are not relevant, reformulating the query.
In this paper, we present a NL-based results view for searching
source code for maintenance that helps address these challenges
by integrating multiple feedback mechanisms into the search
results view: prevalence of the query words in the result set,
results grouped by NL-based information, as a result list, and
suggested alternative query words. Our search technique is
implemented as an Eclipse plug-in, CONQUER, and has been
empirically validated by 18 Java developers. Our results show
that users prefer CONQUER over a state of the art search
technique, requesting customization of the interface in future
query reformulation techniques.

Index Terms—feature location, source code search, software
maintenance

I. INTRODUCTION

Developers spend more time finding and understanding code
than making modifications during maintenance [1]. Thus, we
can reduce maintenance costs by helping developers to more
effectively find the code relevant to their software maintenance
tasks. Similar to how we use Google to search the web,
some source code search tools match a developer’s query with
comments and identifiers in the source code to identify relevant
program elements. Source code search techniques may focus
on searching for code to reuse, such as APIs or open source
implementations [2], [3], [4], [5], [6], [7], or may focus on
searching a single source project for maintenance by finding
features or concerns to be modified or copied [8], [9], [10],
[11], [12], [13], referred to as local code search [14]. In
this paper, we are concerned with the latter problem, that of
searching a single program prior to a software change, rather
than searching a large repository of code for reuse.

Techniques that simply list search results often consider the
words occurring in comments and identifiers individually as
a bag of words [10], [11], [12]. In contrast, recent techniques
have taken advantage of phrasal concepts, which are concepts
expressed as groups of words such as noun phrases (e.g., ‘cell
attributes for DB’) and verb phrases (e.g., ‘get current task

from list’). We use the term lexical concept to describe a con-
cept evoked by a single word, and phrasal concept to describe
a concept expressed as a sequence of words [15]. Phrasal
concepts have been used to improve search accuracy [9] and
suggest alternate query words [13]. Inspired by prior work [8],
which categorizes search results in a hierarchy based on partial
phrase matching, we take advantage of phrasal concepts to
reorganize and filter search results and dramatically change
how the results are viewed to facilitate query refinement.

In this paper, we present CONQUER, a source code search
technique that organizes and presents search results to the user
based on state of the art phrasal concept-based searching [9],
[16]. The technique combines insights gained from the verb-
DO [13] and contextual search [8] approaches, and introduces
novel approaches to organizing the results, quantifying the
query’s relationship to the search results, and suggesting
alternative query words. Our results from 18 Java developers
show that users prefer CONQUER over a state of the art search
technique when searching unfamiliar code. More information
about the CONQUER Eclipse plug-in implementation can
be found in our tool demo [16], which provides a brief
(1 paragraph) summary of user feedback. In this paper, our
contribution focuses on detailing this full user study evaluating
the CONQUER approach.

In prior work, we presented search results in hierarchical
categories of phrases [8], implemented as a proof of concept.
The search mechanism used by this prototype, and upon which
the hierarchical display depends, has limitations that are not
trivially overcome in creating a source code search tool that is
usable in practice. First, the prior search technique required all
query words to be present, in order, in automatically generated
phrases derived from method signature information. Thus, the
hierarchical structure of the prior approach is incompatible
with more flexible keyword searching, leading us to develop
CONQUER’s novel results view. Because the phrase grouping
in prior work [8] required query words to be in a specific
order, overly specific queries would return no results. In
contrast, CONQUER is built on the more flexible SWUM-
search framework [9], and is not subject to such limitations.

II. BACKGROUND AND MOTIVATION

In order to provide the developers useful context on how
the query words are used in the source code, our approach

leverages phrasal concepts, which are automatically derived
from linguistic factors such as the action and theme of a
method signature. The action represents the verb or main
activity of the method, whereas the theme is the direct object
of that action. In this section, we motivate the need for
query reformulation support, discuss why phrasal concepts like
action and theme are so important to local code search and how
they can be used to improve source code search accuracy.

A. The Need for Query Reformulation Support

Existing source code search techniques typically list the
search results as a list of files, method signatures, or lines
where the query matched (i.e., Eclipse file search or grep),
and display the results by decreasing relevance [10], [11],
[12], [9]. As has been shown in prior work [8], simply listing
the search results can increase the burden on the developer
by requiring unnecessary comprehension and relevance judge-
ments to (1) determine if the results returned are relevant at
all, and (2) determine where the relevant results are in the list.
These types of result displays are very difficult to skim quickly,
meaning that the developer must comprehend snippets of code
or method names before determining whether or not the query
even matches their information need. This high cognitive load
is in addition to the developer needing to comprehend the code
necessary for the actual maintenance task itself, and should be
minimized as much as possible.

When a user searches source code with a natural language
or keyword-style query, there are three possible outcomes:

1) The query is ideal, and the user can quickly hone in on
the relevant search results.

The query is close to ideal, but is either overly general
and returns too many results, needing additional words
to specialize the query further, or the query contains a
mixture of ideal and non-ideal query words, requiring
substituting non-ideal query words with ideal words.
The query is completely inaccurate, and needs alterna-
tive words related to the information need.

2)

3)

Our research focuses on how to design a single search
results view interface to meet these three possible outcomes,
and present the search results in such a way that the user can
(1) quickly determine if the results are relevant, (2) quickly
find relevant results, or (3) see alternate query words to help
them further refine their query if it is overly general or
inaccurate. Our key insight is to consider the search problem
from the perspective of the query, rather than the information
need, because the same query may be used to search for
multiple distinct information needs.

For example, consider two related, but distinct, features
in the music management software, Jajuk, which is similar
to iTunes. The “smart shuffle” feature shuffles the entire
music collection and adds all the songs to the current playlist
queue. In contrast, the “shuffle playlist” feature takes the
songs on the current playlist queue and randomly shuffles their
order. Each feature contains approximately 8-12 methods in its
implementation, and although the features seem similar, they
only share one utility method (getRandom), and a generic

GUI update method that handles many user events such as
play, pause, repeat mode, increasing or decreasing volume, etc.
Although these two features represent different information
needs, a developer might reasonably begin with the query
“shuffle” or “random” for either feature. However, the ideal
query for smart shuffle is “global random shuffle” and “shuffle
queue” for shuffle playlist. Our goal is to design a single
search results view interface that can be used for the same
query with different information needs, and still effectively
help the developer quickly and easily refine their query or
locate relevant results.

B. The Importance of Actions and Themes in Code Search

Most existing search techniques use lexical concepts, that
is, they treat a program as a “bag of words”. In cases where
bag of words would return many results, phrasal concepts can
differentiate between the relevant and irrelevant results.

For example, consider searching for code related to the
concept of adding items to a cart in a shopping system.
Figure 1 shows three methods returned by a bag of words
technique when searching for the “add item” query. The
addEntry method, m1, is highly relevant to the target concept
of adding an item, containing occurrences of the “add item”
phrasal concept in both the method name and body statements.
In contrast, sum and loadAllltemsFromURLString, my and
ms, respectively, are not relevant to the target concept, despite
occurrences of both the words “add” and “item” in the source
code. Specifically, sum uses a different sense of the word
“add”, and contains the phrasal concept “add price” rather than
“add item”. Although loadAllltemsFromURLString contains
the “add item” phrasal concept, we can conclude form ms’s
method name that the main intent of this method is to load
items, during which “adding items” is just one substep.

In summary, this example demonstrates that knowing how
words occur together in the action and theme and where they
occur can distinguish between relevant and irrelevant search
results, which we leverage in the CONQUER results view.
We capture the action and theme phrasal concepts for a given
method using the Software Word Usage Model (SWUM) [17].

C. Finding Relevant Methods with Phrasal Concepts

Phrasal concepts derived by SWUM have been used to
improve source code search [9]'. In the current work, we
take advantage of this SWUM-based scoring function, which
integrates the following sources of information (i.e., search
signals) to determine a method’s relevance to the query:

e Location. When a method is well-named, its signature sum-
marizes its intent, while the body implements it using a variety
of words that may be unrelated. A query word in the signature
is a stronger indicator of relevance than the body.

o Semantic role. Prior research has shown that using semantic
roles such as action and theme can improve search effective-
ness [13]. The SWUM-based score makes use of this insight

Hdentifiers are split using conservative camel case.

p
Phrasal Concepts

) JE*

* @brief Add a new item entry to the set.

* am ie - The item entry to add.
N
public void@ntry ntry ie) {

my

add item
/ N\

FilterManager.getInstance(@& ie);

* item, and loa

*/
private void loadAl‘Items"r

em into jthe program.

for (JHTML htmlDocument ager)

/** @brief Load XURL in, fin/ all hrefs on the page that poin

URLString(Searcher searcher, String label)
—— .
URLPager pager = new URLP@ger (searcher.getSearch()); int results = 0;

if (htmlDocument != nu
results +=@l Items@nPage (htmlDocument, label, searcher);
e —

O an

protected Str?‘ g sum(String field) {

Currency accum = null;
for(ItemInfo it :
» accum = aceunf.add(it.getCurPrice());

if(accum == null) return "$x.xx";
m return accum.toString(); m

3 } 2

Figure 1. Search results and phrasal concepts for “add item” query. All the methods returned by the search contain the words “add” and “item”, but “add

item” is not necessarily the main action taken by each method.

and leverages SWUM’s advanced extraction rules to increase
the accuracy of action-theme extraction.

e Head distance. The closer a query word occurs to the head, or
right-most, position of a phrase, the more strongly the phrase
relates to the query word. For example, the phrase “image file”
is more relevant to “saving a file” than “file server manager”.

e Usage. If a query word frequently occurs throughout the rest
of the program, it is not as good at discriminating between
relevant and irrelevant results. This idea is commonly used in
information retrieval techniques [18].

In an evaluation of state of the art search techniques,
the SWUM-based search mechanism was consistently ranked
more highly overall [9].

III. THE CONQUER APPROACH

We implemented our approach as an Eclipse plug-in [16],
CONQUER, for searching Java projects’. The search is in-
tegrated into Eclipse’s general search dialog box with a
CONQUER tab. After the developer enters a natural language
query (i.e., a series of keywords), the plug-in initiates the
SWUM-based search mechanism [9]. The results are then pre-
processed before being displayed to the user. We designed the
CONQUER results display to address 3 key challenges:

1) Quickly determine if results are relevant (i.e., did the
query work?).

2) Find alternative query words to refine overly general
queries or substitute words in a partially correct query.

3) Find relevant results quickly.

Figure 2 shows an example CONQUER results view for
the query “shuffle global playlist”. At the top of the results
view (A), we include numbers indicating the prevalence of the
query words in dominant positions in the method signatures.
Next, the view is split into portions for action and theme
organization. In each portion, alternative action or theme query
words are displayed above the search results (B), which are
presented in nested trees organized by action and theme (C).

2 Available at lee.cs.montclair.edu/~hillem/CONQUER/

Finally, the results are listed in order of relevance score (D),
preceded by a short, natural language phrase that describes the
search result’s action and theme to facilitates quick skimming
of the results. The method signature of each result is displayed
as a clickable Eclipse Java element, allowing the developer to
directly navigate to the source code of a selected method.

The driving insight for our approach is that the same
query might be used to search for multiple information needs.
Our challenge is in designing a results view that meets the
needs of developers searching with queries that are ideal,
overly general, partially correct, or completely incorrect. In
developing our approach, we began with a set of 10 search
tasks with ideal queries across 5 different Java programs. Next,
we listed a number of possible queries a developer might
reasonably begin with in creating a query to search for that
feature, making sure to take advantage of overlapping query
words between distinct features. This set of search tasks and
queries formed the basis of our training set in developing
the various components of the results view described in the
following section.

A. Prevalence of Query Words

The first key challenge we are trying to address is deter-
mining whether the query returns relevant results. We begin
communicating relevance to the developer right at the top of
the display by indicating the frequency of the query words
in the action and theme position in the method signatures,
as shown in Figure 2(A). The relative frequency of query
words roughly indicates the success of the query in meeting
the developer’s information need.

For example, consider the query “mute music” searching
for the “mute” feature in music management software, where
the concept of ‘mute’ is more important to the feature than
‘music.” If ‘music’ is much more prevalent in the source
code than ‘mute’, it will fill the search results with irrelevant
entries, causing more work for the developer. The frequencies
next to each query word approximate each word’s power
to discriminate between relevant and irrelevant results. For
instance, if ‘music’ occurs 100 times in the result set and

v Tasks (_1 ResultsView $3 - Search

Query: playlist (74) shuffle (20) global (12)

Actions

Alternatives: forced, computes, move, select, startup, string

¥ shuffle

v global
@ shuffleGlobal() - DBusSupportimpl.java
ef testShuffleGlobal() - TestDBusSupportimpl.java
@ shuffleGlobal() - DBusSupport.java

V¥ queue
e’ shuffle() - QueueModel.java
@ testShuffle() - TestQueueModel.java

Phrase Method

shuffle global @ shuffleGlobal()

shuffle global o FtestShuf‘ﬂeGIobaI()

shuffle global @ shuffleGlobal()

get playlist @ getGlobalShufflePlaylist()
get playlist @ getGlobalNoveltiesPlaylist()
get playlist @ getShuffleNoveltiesPlaylist()

= O

Themes
Alternatives:

P global
P playlist
P list
V¥ gueue
» shuffle
P get
P add
P remove

-

global, queue, test, engine, startup, service

File

DBusSupportlmpl.java
TestDBusSupportimpl.java
DBusSupport.java
FileManager.java
FileManager.java
FileManager.java

Figure 2. CONQUER results view for the “shuffle global playlist” query. The ideal query for this search task is “shuffle queue”. The components of the
results view include: (A) prevalence of query words, (B) suggested alternative query words, (C) categorizing by action or theme, and (D) result phrase list.

‘mute’ just 4 times, the developer will know to revise the
query to focus on ‘mute’, since ‘music’ is likely to occur with
irrelevant results. This will also help the developer focus on
the concept of ‘mute’ in the other parts of the results view.

We use the occurrence of words in prominent positions
in the method signatures over raw frequency values because
it is possible for a word to occur many times in positions
indicating weaker relevance in the code. For example, the word
‘return’” may be included many times throughout the code in
keywords, but rarely in a method signature. In addition, the
frequency in actions and themes affects the organization of
the remaining results view components. If the developer sees
from the frequencies that the query words are out of balance
in terms of her information need, she will better understand
how to interpret the results in the remaining views.

B. Suggested Alternative Query Words

Considering developers may select accurate query words
just 10-15% of the time [19], it is likely that a developer will
need to refine his query. Our goal is to suggest alternative
query words that appear in the source code base. We use
different approaches for recommending alternate action and
theme query words because verbs and nouns are used differ-
ently in source code. Except for overriding method names,
verbs tend to be used with more variety and synonyms in
source code, whereas nouns tend to be better discriminators
to identify relevant documents [20]. The suggestions leverage
the relative frequency of the query words within the result set

and the program. In our development set, we observed that
queries needing more specific or substituting alternate query
words relied on verbs that frequently occur with the query
words in the action-theme pairs in the result set, but occur
less frequently in the rest of the program (i.e., can be good
discriminators). In contrast, the alternate themes in our result
set frequently occur in the action-theme pairs in the result set
with the query words.

For example, consider searching for the shuffling global
playlist feature in a music player. A developer might first enter
the query “shuffle global playlist”, where the ideal query for
this particular search task is “shuffle queue”. In this example,
‘queue’ would be suggested as an alternative word, as shown in
Figure 2(B). The dominance of ‘playlist’ in the search results
(as indicated in the query section of the view), will help the
developer refine the query to “shuffle global queue”, getting
much closer to the ideal query.

C. Categorizing by Action or Theme

When a query is not ideal, there still may be relevant results
buried in the result list. We introduce two hierarchies of results,
organized by action and theme, to allow more opportunities for
a variety of search results to be displayed in the initial result
view. For example in Figure 2(C), the ‘shuffle’ query word
causes the shuffle category to be top-ranked in the action view.
This verb only occurs with two themes: global and queue.
Although ‘global’ is in the query, a more ideal query word for
this search task is ‘queue’. Even though the query is less than

ideal, the relevant method QueueModel.shuffle() is only the
fourth method in the action view. In addition, the action and
theme views help organize the search results to jump around
to different areas of the results, based on the appropriateness
of the query words while exploring the result set.

To construct the action and theme hierarchies, we break
the search relevance score down into its action and theme
components, which are combined together into the final rel-
evance score which determines the result phrase list order
in the bottom component of the results view. In the action
view, we group all the results by action, and sort the groups
by decreasing action score so that the most relevant actions
are at the top of the list. Below the action level we group
the remaining results by theme, sorted by decreasing theme
score. If a group of actions or themes contains multiple items
with different action/theme scores, we sort by the maximum
action/theme score of the group. The theme view is constructed
in a similar fashion, with the first level of the hierarchy based
on the theme, and the second level based on the actions.

D. Result Phrase List

The result phrase list is closer to a more traditional search
results view, simply listing the methods and files where
matches occur, shown in Figure 2(D). However, we go beyond
a simple list view by providing a short natural language
phrase that describes each method, to make the results easier
to quickly skim without requiring the cognitive overhead of
mentally parsing the syntax of method signatures and file
names. This facilitates rapidly scrolling through the results,
to see what types of words and phrases describe the methods
appearing in the result set. For an ideal query, this section will
contain the relevant results at the top of the list.

In this portion of the results view, we report query matches
at the method and file level. This is in contrast to a grep-like
search, such as Eclipse’s built-in File Search, that displays the
files and lines matching the query. We believe that in larger
software systems (over 20 KLOC), where source code search
for maintenance is more likely to be needed, methods will
have meaningful names [21]. Thus, we focus on summarizing
the methods’ main actions and themes in our phrase list view,
rather than summarizing the individual line matches.

IV. EVALUATION

Since the underlying SWUM-based search mechanism has
been evaluated in prior work [9], we focus our evaluation
on the main contribution of the current work, namely, the
search interface. To evaluate this, we compared CONQUER
search (CONQUER) with two baseline methods: Eclipse’s built-
in File Search (ECLIPSE) and the same SWUM-based search
mechanism as CONQUER with only the Result Phrase List
view (called SCORE). In this study, we compare feedback from
18 developers performing 28 source code search tasks.

A. Search Mechanisms

The independent variable in our study is the search tech-
nique: CONQUER, SCORE, and ECLIPSE. The CONQUER

search technique is the full CONQUER approach described
in Section III. As a baseline, we compare CONQUER to the
built-in Eclipse File Search (ECLIPSE) that uses wild card
queries similar to UNIX grep. To separate out the effect of
CONQUER’s results view interface versus the SWUM-based
search mechanism, we also created a stripped-down version of
CONQUER’s results view interface, called SCORE. The SCORE
results view only includes the phrase list (e.g., bottom of
Fig. 2), and not the action or theme hierarchies, the suggested
alternative query words, nor prevalence of query words.

B. Participants

Participants were invited to participate via e-mail and online
message boards, focusing on attracting Java developers with
industry experience. In total, we obtained results from 18
volunteer software developers with varying levels of program-
ming and industry experience. Table I shows characteristics of
our subject population. The distribution of years of program-
ming and industry experience for each subject is displayed
on the left of the table, and the frequency that they perform
maintenance tasks is on the right. We initially recruited 28
subjects, however only 18 completed the study (some of the
subjects had trouble installing the plug-in). The developers had
little to no prior knowledge of the subject applications.

C. Search Tasks

We used 28 search tasks in the study that have been
used in previous experiments [8], broken into 7 groups of
4 search tasks. Because the description of the search tasks
can add significant variability to the study, we used search
tasks from two different sets, which have different types of
descriptions. The first set of 19 tasks is from the 45 KLOC
JavaScript/ECMAScript interpreter and compiler, Rhino. Each
search task maps to a feature described by a subsection of the
documentation, which is used as the task description that is
given to subjects before formulating a query.

The second set of search tasks consists of 9 user-observable,
action-oriented features from 4 programs ranging in size from
23 to 75 KLOC [13]. The four programs are: iReport, a visual
report builder and designer; jBidWatcher, an auction bidding,
sniping, and tracking tool for online auction sites such as eBay
or Yahoo; javaHMO, a media server for the Home Media
Option from TiVo; and Jajuk, a music organizer for large music
collections. The search task descriptions consist of screen shots
of each feature being executed. The participants are asked to
look at a screen shot and then formulate a query to search for
the code that implements the feature.

Both sets of search tasks were derived by two groups
of independent researchers, and have been used as search
tasks in previous evaluations [8], [12], [13], [22], [23]. It
should be noted that as a compiler, Rhino is out of most
of our developers’ familiar domain. In addition, it is known
from previous experience that the search tasks from javaHMO
and Jajuk are implemented using different words than those
that are visible in the user interface, which is used for the
task description. Thus, the queries from these two programs

Number of Software Developers in Study
No. Years Programming Industry Perform Perform Maintenance Frequency
: Experience Experience || Maintenance on Code Not Authored
10+ years 9 2 7 5 Daily
5-9 years 6 2 7 1 Weekly
1-4 years 2 9 2 6 Monthly
< 1 year 1 5 2 6 Yearly
Table 1

SUBJECT DEVELOPER CHARACTERISTICS: NUMBER OF YEARS OF EXPERIENCE (LEFT) AND MAINTENANCE FREQUENCY (RIGHT)

may require more query reformulation, since it will be more
challenging for participants to ‘guess’ the ideal query. Each
block of 4 search tasks includes 1-2 tasks with screen shots
and 2-3 tasks with documentation as the task description.

D. Measures

We compare the 3 search tools by measuring user prefer-
ences in terms of 4 factors: enjoyment, effectiveness, ease of
use, and likelihood of future use. We measure these factors
using the questions administered as a follow-up survey:

1) How much did you enjoy using the search tool?

2) Rate how effective the search tool was in helping you
complete the search tasks

3) How easy or complicated is the interface to use?

4) How likely are you to use this search technique in your
own work?

Each response is measured using a 7-point Likert scale,
where 1 is worst (negative) and 7 best (positive). Since subjects
are given multiple tools to work with, we can compare the
relative difference between each technique per user. We also
measure user preferences in terms of the specific components
of the CONQUER results view using a 7-point Likert scale:

1) How helpful was the action view in helping you com-
plete the search tasks?

2) How helpful was the theme view in helping you com-
plete the search tasks?

3) How helpful was the phrase list view in helping you
complete the search tasks?

4) How helpful were the alternative query word suggestions
in helping you complete the search tasks?

In addition to the above quantifiable questions, we asked
a number of open-ended questions about user preferences in
using the various search techniques.

E. Design

In order to maximize the number of participants in the
study with industry development experience, we sought to
minimize the overall study time to within 30-60 minutes. To
meet this goal, we asked each subject to use two of the three
search tools in the study, on a total of 8 search tasks (4 per
search technique). We used 4 tasks to minimize the potential
variations due to search task difficulty, and keep the time
required of each participant within the desired range.

Thus, in the design there were three main blocking factors:
the search tools used, the set of search tasks used, and the

order the tools were used (to control for learning effects). This
gives us 6 possible combinations of two out of three search
tools, and 42 possible combinations of search task blocks.
Given that a full factorial design was impossible, we designed
the tool and search task combinations so that every possible
combination of tool orderings was repeated in blocks of 6, and
randomly assigned search task groups such that each technique
was used with each search task as evenly as possible, with
approximately equal numbers using the first and second search
sets. (That is, we tried to avoid the first search task set only
occurring with the first tool of the study.)

Participants were assigned to a random group as they
volunteered. Because not all the participants completed the
study, we do not have an equal number of replications for each
combination. All the experimental materials, including the in-
structions, are available online: lee.cs.montclair.edu/~hillem/
CONQEvalSite.

F. Methodology

After agreeing to participate via e-mail or online message,
participants were e-mailed detailed instructions for completing
the study. First, participants were asked to install the Eclipse
plug-in, containing all 3 tools in the study, and to import the
Java projects to be searched. When installing the plug-in, all
developers were asked to complete an example search task to
familiarize themselves with the experimental procedure. Next,
participants were asked to formally agree to participate in the
study by beginning the online survey that served to collect
most of the information in the study.

The study itself consists of viewing instructions and screen
shots of the first search tool, and attempting to formulate
queries for the four search tasks listed. This process was
repeated for the second search tool. Participants were then
asked to complete the survey. As part of the survey, they were
asked to select a menu option in the Eclipse plug-in interface
that would anonymously e-mail the results. Anonymity was
preserved in this process by asking the user to select an
anonymous identifier to enter into the survey, and this same
identifier was requested when sending the e-mail results.

G. Threats to Validity

Studying the effects of human participants on such an open-
ended task as source code search poses many challenges.
Although we endeavored to control for variability as much
as possible, there are still threats to the validity of the results.

6 64 =

4 I
[0} [0} ! !
g g -
5 2 g 244 ©
: - [*J :
a a :
o} 0 © 2 0~ ¥ <
[[} '
[&] [&] S— VAN
2] ?: 0 '
T 27 . ¥ 3 2] e
4 : A X<
- -~ ~ -

4 _4_

6 _6_

CONQUER - Eclipse
CONQUER - SCORE
SCORE - Eclipse —
CONQUER - Eclipse
CONQUER - SCORE
SCORE - Eclipse

(a) Easiness of interface (b) How effective was search tool

S

Likert Scale Difference
o
|
+
:""Iﬂ d
Likert Scale Difference
o N
| |

-2 4 -2 -
-4 — -4 —
-6 — -6 —

CONQUER - Eclipse
CONQUER - SCORE
SCORE - Eclipse
CONQUER - SCORE
CONQUER - Eclipse
SCORE - Eclipse —

(c) Level of enjoyment (d) How likely to use in own work

Figure 3. Differences in user preferences according to a 7-point Likert scale. The values are differences between user preferences of each technique combination.
The box plots, which show the median and quartiles, are overlaid with the actual data (diamonds) and mean (plus).

The search tasks are an unavoidable threat. To minimize
the effect that some tasks are more difficult to locate and
formulate queries for, we used search tasks from 5 different
programs with two different types of descriptions. In addition,
each participant applied each search tool to 4 tasks to avoid
any one task dominating the results and ensure comparability
across sets of search tasks. However, it is possible that the
task groups that we randomly selected were not of equivalent
difficulty. We avoided this as much as possible by ensuring that
each group contained search tasks from at least 2 different
programs, under the assumption that tasks from the same
program will be of approximately the same difficulty.

The experiment was administered as a volunteer online
survey and electronically distributed plug-in to gain access to
as many developers with industry experience as possible. This
means that participants are not in a controlled environment,
and other distractions may have influenced the attention that
subjects devoted to the experiment.

Because the study was administered as an Eclipse plug-in
and online survey, rather than in a controlled lab setting, there
were some challenges in reconciling the data after collection.
The Eclipse plug-in logged every query entered into one of the
3 search tools. However, especially for ECLIPSE, participants
occasionally searched through the primary Eclipse search,
rather than the one we distributed with logging enabled. In
the online survey, participants were asked to enter in the best
queries they found for each search task. Due to the more

naturalistic setting, there were a number of inconsistencies
between the queries logged by the plug-in and those entered
into the survey. For example, some of the queries entered in
the survey were never logged by Eclipse, and so were never
executed or executed using an unknown search mechanism.
Not all participants entered queries for all 8 search tasks
assigned. Because of these inconsistencies in the data, we were
unable to analyze search effectiveness through traditional IR
measures or via the number of queries entered. Instead, we
focus on the most reliable data we have, which is the direct
user feedback on the relative advantages of each tool.

V. RESULTS AND DISCUSSION

Because not all the participants who volunteered were
able to successfully complete the study, we do not have an
even number of replications. The CONQUER and ECLIPSE
techniques were each used 13 times, whereas SCORE was only
used 10 times. Thus, we have 8 observations for analyzing
differences between CONQUER and ECLIPSE, with 5 observa-
tions each for comparing differences with SCORE—ECLIPSE
and CONQUER—SCORE.

Figure 3 shows the overall difference in results between
pairs of tools for the 4 factors measured: ease of use, effec-
tiveness, enjoyment, and likeliness to use in work in future.
On the x-axis are the pairs of tools, and on the y-axis the
difference in ratings based on a Likert scale. For instance,
a value of 2 for CONQUER—ECLIPSE implies that the user

preferred CONQUER over ECLIPSE by 2 out of a 7-point scale.
Similarly, a value of —4 for CONQUER—SCORE indicates that
the user preferred SCORE over CONQUER by 4 out of a 7-
point scale. In taking the differences, we ordered the search
techniques based on our hypothesis that the users would prefer
CONQUER, followed by SCORE, and ECLIPSE.

The results in Figure 3 are displayed as box plots where the
thick horizontal line represents the median, the plus represents
the mean, and the box indicates the interquartile range (i.e., the
difference between the first and third quartiles). The whiskers
extend to the maximum and minimum values of the range,
except for outliers. The box plots are overlaid with the actual
data points from the data set, indicated by o.

We did not observe the mean ratings for each search tool to
be statistically significantly different. In addition, we used a
paired t-test to verify that there was no significant difference
in any of the factors between the search tools used first or
second. Thus, we did not observe any learning effects.

A. Quantitative Results

From Figure 3(a) we see that the CONQUER ease of use
could be improved. Given the mean difference is close to 0,
it appears that just as many subjects thought CONQUER was
easier to use as compared to ECLIPSE. Subjects overwhelm-
ingly preferred ECLIPSE search over the simplified SCORE
interface. Figure 3(c) shows a similar trend for enjoyment.

Figures 3(b) and 3(d) more closely follow our expected
trend. In terms of both effectiveness and likelihood of using in
future work, CONQUER is clearly preferred over ECLIPSE, and
more modestly outranking SCORE. However, the relationship
between SCORE and ECLIPSE is less clear. Based on effec-
tiveness, subjects seem to prefer SCORE, but in terms of using
any of the techniques in future, users predominantly prefer the
more familiar ECLIPSE search.

Figure 4 shows user preferences for the individual compo-
nents of the CONQUER results view, using the same box plot
representation as in Figure 3. The difference is that the y-axis
represents a raw Likert scale, rather than the difference of two
scales. Thus, a value of 4 indicates neutrality. The individual
box plots are ordered by increasing mean, and thus the x-
axis gives us a view of the relative preference of users for
each component of the CONQUER results view. The alternative
query words have the highest mean, with the phrase list view
as a close second. This is interesting in light of the fact that
the SCORE search, which only consists of the phrase list, was
not well regarded overall. The query numbers view has the
lowest score. Although it appears that users preferred to see
the query words in the results view (a common complaint
about SCORE), the query numbers do not appear as useful as
the other additions to the interface. This may be because the
subjects had little intuition as to what the numbers meant.

B. Qualitative Feedback

Many of the users appreciated the alternative suggested
query words as well as the action and theme tree view:

“I was actually really surprised at how well [CON-
QUER] worked. At first, I didn’t think it would
be useful, even compared to [SCORE]. However,
the tool seemed to actively detect synonyms that I
wouldn’t have used at first (construct wasn’t my first
guess, but it was picked up right away by the tool).”

Users responded positively with “the summary trees help
faster navigation” and “Query recommendations are xverys
helpful and important when searching unfamiliar code.” How-
ever, not every user found all aspects of the interface to be
intuitive:

“I didn’t really understand the action vs theme view.
For a while I thought I should be able to double-click
to replace with the synonyms and didn’t notice that
they were in a treeview. After a while I realized you
could drill down to a fully refined query.”

i
X - - -Q
i

- Likert Scale +

Theme View —

Action_View —
Phrase List View —

Query_Word_Numbers —
Alternative_Query_Words —

Figure 4. User preferences for individual CONQUER results view compo-
nents (7 is best, 1 is worst).

The CONQUER responses for improvement primarily fo-
cused on two things: search behavior and customizability of
the query interface. In terms of search behavior, multiple
subjects wanted the ability to match all keywords or match
entire identifiers. CONQUER by default splits identifiers, which
made the search problem more challenging for some search
tasks, especially when the documentation (i.e., feature de-
scription) included specific identifiers to search for. In these
instances, the users overwhelmingly requested the ability to
match specific strings:

“I did not like that I could not make specific string
searches (match case). What I mean is that if i want

to search for (toString) and not (to)(String) I could
possibly do it by searching like: ‘toString’ (like you
could on google) with quotes around the keyword.”
In terms of the interface, users wanted more variety, more
flexibility, and more control:

“Query recommendations should be surfaced via a
different Ul technique (autocomplete or suggestions
link below search box after searching, like google).”

“Provide sort options for Actions and Themes (al-
phabetic order, relevance order, etc...).”

In addition, some users disliked how much space the results
view uses: “Takes up way too much screen real estate.” By
allowing more flexibility and customization in the interface,
users could better tailor the view to fit their workflow.

One user, who is also an avid googler, felt they would
recommend the CONQUER search tool to colleagues:

“Most of my queries narrowed the results to < 7.
Compared to the actual number of generic search
results, this tool shows vast potential. If released, I
would totally recommend this to some of my work
colleagues who face similar issues concerning code.”

Like CONQUER, SCORE and ECLIPSE saw mixed results.
ECLIPSE is familiar, and thus many participants found it
easy to use and uncomplicated. Some especially liked the
straightforward results view: “I liked seeing the list of class
names and the line numbers and the context of where my
keywords were found.” Similarly, some participants preferred
the simplicity of the SCORE interface: “It seemed like a very
simple, bare-bones tool that would be easy to use quickly,”
“The simplicity of the tool was nice and made for quick
searching”; whereas some found the phrases misleading:

“I found the phrase distracting. Maybe it was the
searches that I was doing, but the phrase wasn’t
as helpful to me as seeing where my words were
showing up in the code. The phrases seemed useful
for some methods but not all. 'm not sure that I
used the phrases that often when I was trying to
verify my results.”

Likewise, some participants found the ECLIPSE queries diffi-
cult to use: “Touchy results. Make one wrong move and your
search results get it.”

C. Discussion

In analyzing the results, we observe that there are certain
situations that lend themselves to each search mechanism.
When a developer has an idea of the appropriate identifier
names to search for, they want to perform strict matching
of identifiers or keywords with an ECLIPSE-like search. In
contrast, when a developer is not familiar with a codebase or
its naming conventions, and has no insight into what identifiers
would be relevant, they need the support of a natural language
search provided by SCORE or CONQUER. Providing a flexible
interface for either scenario will further enable the developer to
use a single search interface for all their search needs. Future

work will investigate how to integrate that customizability in
an intuitive way, without using too much screen real estate.

In general, participants seemed to appreciate the alternative
query words suggested. Some participants requested suggest-
ing synonyms as well co-occurring words. In future, we would
like to explore using synonyms [24], [23] to enhance the
suggested alternative query words.

VI. RELATED WORK

Traditional search techniques simply list the search results in
order of decreasing relevance [9], [10], [11], [12]. In contrast,
we focus on intelligently displaying search results to the user
to quickly determine result relevance, find relevant results, and
refine inaccurate queries.

In prior work we developed an approach to extract natural
language phrases from method signatures to help developers
reformulate better queries and group search results [8]. Al-
though these hierarchical categories are similar in spirit to
CONQUER’s action and theme views, they rely on completely
different approaches. First, the prior search technique required
all query words to be present, in order, in automatically
generated phrases derived from method signature informa-
tion. Counter-intuitively, better results were obtained using
fewer keywords, and no information from method bodies
or comments was used in the search mechanism. Thus, the
hierarchical structure of the prior approach is incompatible
with more flexible keyword searching, leading us to develop
CONQUER’s novel results view. The phrase grouping in prior
work [8] required query words to be in a specific order, and
overly specific queries would return no results. In contrast,
CONQUER is built on the more flexible SWUM-search frame-
work [9], and is not subject to such limitations. Lastly, the
prior approach did not suggest any alternative words.

Another closely related work is FindConcept, which auto-
matically extracts verb-DO pairs (similar to our action-theme
phrasal concepts) from source code comments and identifiers
for source code search and query recommendations [13]. Our
approach makes use of insights gained during the course of
FindConcept’s research, and is based on next generation action
and theme extraction using SWUM [17], which has been
used to improve source code search accuracy [9]. While both
techniques take advantage of the occurrences of actions and
themes in source code to recommend alternative query words,
the methodologies for determining alternative query words
are different. In addition, CONQUER introduces an integrated
results view that simplifies FindConcept’s multi-step query re-
finement process that includes iteratively adding recommended
verbs, direct objects and synonyms, before finally executing
the query. In contrast, CONQUER is designed to allow for
rapidly refining the query, with alternatives suggested within
the interface as needed.

Structural searching using natural language queries [25]
targets a different problem. With this type of search, the user
enters in a natural language (NL) query such as, “where is this
method called?” or “what fields are declared of this type?”, the
NL query is parsed, and the appropriate structural model of the

program is searched to answer the low-level structural ques-
tion. These queries represent traditional structural queries [26],
[27], but expressed in natural language. In contrast, our goal is
to find code that implements a high-level concept or feature of
the software system. Once the developer has located the code
related to a software maintenance task, a structural information
query can be used to find other related code or determine the
impact of a proposed change.

There is also work on automatically extracting topic words
and phrases from source code [28], [29], [30], displaying
search results in a concept lattice of keywords [12], and
clustering program elements that share similar phrases [31].
These techniques could be used in conjunction with phrasal
concepts to help refine phrases and organize search results.

VII. CONCLUSION

In this paper, we present CONQUER, a novel source code
search interface that organizes and presents search results
using a novel NL-based results view that integrates multiple
feedback mechanisms into the search results view: prevalence
of the query words in the result set, results grouped by
NL-based information, traditional result list, and suggested
alternative query words. We empirically validated our CON-
QUER approach, which is implemented as an Eclipse plug-in,
based on user feedback from 18 Java developers. In general,
participants tend to prefer CONQUER over a grep-like search,
but would prefer the results view interface to be simplified and
made more customizable by the user. Our results show that
CONQUER is a promising platform from which to continue
refining a results view interface for query refinement and
contextualizing search results.

In the future, we plan to investigate automatically suggesting
synonyms [24], [23] and making the interface more intuitive.
Although our evaluation is based on Java, the underlying
technology is also implemented for C++. In future work, we
anticipate integrating our approach into a Visual Studio search
framework such as Sando [14].

REFERENCES

[11 A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during Soft. maintenance tasks,” IEEE Transactions on Soft. Eng.,
vol. 32, no. 12, 2006.

[2] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging usage
similarity for effective retrieval of examples in code repositories,” in
Proc. 18th ACM SIGSOFT Int’l Symposium on Foundations of Soft.
Eng., 2010.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proc. SIGCHI Conf. on Human Factors in Computing
Systems, 2010.

[4] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: a search engine for finding functions and their usages,” in
Proc. 33rd Int’l Conf. on Soft. Eng., 2011.

[5] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proc. Visual Languages and Human-
Centric Computing, 2006.

[6] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang, “Apiexample:
An effective web search based usage example recommendation system
for java apis,” in Proc. 26th IEEE/ACM Int’l Conf. on Automated Sofft.
Eng., 2011.

[7]

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in Proc. 23rd European Conf. on
Object-Oriented Programming, 2009.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of NL-queries for Soft. maintenance and reuse,”
in Proc. 31st Int’l Conf. on Soft. Eng., 2009.

——, “Improving source code search with natural language phrasal
representations of method signatures,” in Proc. 26th IEEE Int’l Conf.
on Automated Soft. Eng., 2011.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proc. 11th
Working Conf. on Reverse Eng., 2004.

D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu, “Source
code exploration with Google,” in Proc. 22nd IEEE Int’l Conf. on Soft.
Maintenance, 2006.

D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Transactions
on Soft. Eng. and Methodology, vol. 21, no. 4, 2012.

D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in Proc. 6th Int’l Conf. on Aspect-Oriented Sofft.
Development, 2007.

D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an exten-
sible local code search framework,” in Proc. ACM SIGSOFT 20th Int’l
Symposium on the Foundations of Soft. Eng., 2012.

R. Jackendoft, Semantic Structures. Cambridge, MA: MIT Press, 1990.
M. Roldan-Vega, G. Mallet, E. Hill, and J. Fails, “CONQUER: A tool
for NL-based query refinement and contextualizing source code search
results,” in Proc. 29th IEEE Int’l Conf. on Soft. Maintenance, 2013.
E. Hill, “Integrating natural language and program structure information
to improve Soft. search and exploration,” Ph.D. dissertation, University
of Delaware, Aug. 2010.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Informa-
tion Retrieval. NY, NY, USA: Cambridge University Press, 2008.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The
vocabulary problem in human-system communication,” Communications
of the ACM, vol. 30, no. 11, 1987.

G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “On the role of the nouns in IR-based traceability
recovery,” in IEEE 17th Int’l Conf. on Program Comprehension, 2009.
B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs,” in Proc. 18th Annual Psychology of
Programming Workshop, 2006.

M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho, “Do crosscutting concerns cause defects?”
IEEE Transactions on Soft. Eng., vol. 34, no. 4, 2008.

J. Yang and L. Tan, “Inferring semantically related words from Soft.
context,” in Proc. 9th IEEE Working Conf. on Mining Soft. Repositories,
2012.

M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker,
“Automatically mining Soft.-based, semantically-similar words from
comment-code mappings,” in Proc. 10th Working Conf. on Mining Sofft.
Repositories, 2013.

M. Wiirsch, G. Ghezzi, G. Reif, and H. C. Gall, “Supporting developers
with natural language queries,” in Proc. 32nd Int’l Conf. on Soft. Eng.,
2010.

R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in Proc. 27th Int’l Conf. on Soft. Eng., 2005.
D. Janzen and K. D. Volder, “Navigating and querying code without
getting lost,” in Proc. 2nd Int’l Conf. on Aspect-Oriented Soft. Devel-
opment, 2003.

A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated
topic naming to support cross-project analysis of Soft. maintenance
activities,” in Proc. 8th Working Conf. on Mining Soft. Repositories,
2011.

G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in
source code using latent dirichlet allocation,” in Proc. Ist India Soft.
Eng. Conf., 2008.

M. Ohba and K. Gondow, “Toward mining “concept keywords” from
identifiers in large Soft. projects,” in Proc. Int’l Workshop on Mining
Soft. Repositories, 2005.

A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identifying
topics in source code,” Information Systems and Technologies, vol. 49,
no. 3, 2007.

