CONQUER: A Tool for NL-based Query
Refinement & Contextualizing Code Search Results

Manuel Roldan-Vega, Greg Mallet, Emily Hill, Jerry Alan Fails
Department of Computer Science
Montclair State University
Montclair, NJ, USA
{roldanvegam1, malletg1, hillem, failsj} @mail.montclair.edu

Abstract—Identifying relevant code to perform maintenance
or reuse tasks is becoming increasingly difficult. Software sys-
tems continue to grow and evolve, and developers often find
themselves searching within thousands to even millions of lines
of code to identify code relevant to a particular maintenance
task. Automated solutions are vital to help developers become
more efficient at locating code to be modified when performing
maintenance tasks. In order to address this need and help
developers reduce the time spent finding and searching for
relevant code, we have built an Eclipse-plugin, CONQUER,
that helps developers identify relevant results by providing
critical insight and context of how query words are used in
the code. CONQUER leverages advanced natural language (NL)
information in the source code to group, sort and display the
results in a meaningful way. In addition, CONQUER analyzes
the frequency and co-occurrence of words in the method result
set to provide alternative phrases that can help further refine
the query. This rich contextual hierarchy helps the developer
to quickly determine if the query is correct and hone in on the
relevant results. The NL-based organization of results reduces the
number of relevance judgments the developers need to make, and
thus can reduce the overall time for a maintenance task.

Index Terms—feature location, source code search, software
maintenance

I. INTRODUCTION

When performing software maintenance or reuse tasks,
developers must first identify the relevant code fragments
to be modified or reused. In fact, locating the code to be
modified is often more time consuming than the maintenance
task itself. As software systems continually grow in size and
complexity, it becomes more difficult for developers to identify
code relevant to a particular task within millions of lines of
code. Traditional search tools that use natural language (NL)
queries display search results as a simple list [1], [2]. These
tools typically do not offer feedback, context, or insight for the
developers to understand the results and determine if these are
relevant to their query, nor whether the query was successful
or not. The developer cannot easily determine if the query
is accurate, overly general (and needs to be more specific),
or if the query is completely inaccurate. In addition, few of
these search tools provide alternative words or phrases that
can help the developer refine or reformulate the query. To
satisfy this need, we developed CONQUER, an Eclipse-plugin
that provides NL context to the developers so that they can
identify relevant code or reformulate queries more efficiently

and effectively. CONQUER builds on previous research on
natural language phrasal representations [3] and source code
context [4] and enhances this prior work by analyzing addi-
tional contextual information, grouping the results by actions
and themes, and suggesting alternative query words. These
elements are all integrated into the plugin and made available
to the developer for query reformulation and refinement.

II. BACKGROUND AND RELATED WORK

In order to provide developers with useful context on how
the query words are used in the source code, it is necessary
to identify linguistic factors such as the action and theme of
a method signature. The action represents the verb or main
activity of the method, whereas the theme is the direct object of
that action. The SWUM (Software Word Usage Mode) [3] for
Java allows us to capture these linguistic relationships in code.
For example, given the signature addToList(ltem), SWUM
would identify the action as “add” and the theme as “item”. In
the cases where there are multiple actions or themes, SWUM
also analyzes the head distance to determine the most relevant
action or theme. This linguistic information has been used in
prior work to improve source code search [3], but has never
before been used to group and arrange the query results.

Although the search mechanism is the same as proposed
in prior work [3]—which integrates location, semantic role,
head distance, and usage information to calculate the relevance
score—this query mechanism and results view were not inte-
grated into the Eclipse interface and thus were not usable by
the average developer. In contrast, the current approach not
only integrates the query mechanism into the Eclipse search
dialogue box and displays the results in the view pane; it
also provides additional contextual feedback for determining
whether the results meet the search needs of the developers.
We go beyond the simple hierarchy of phrases used in prior
work [4] by organizing the search results by actions and
themes. In addition, we automatically recommend alternate
query words to help refine overly general or inaccurate queries.

CONQUER differs from previous search tools [1], [2], [5]
in that it not only displays the relevant results in a list, but
allows the developer to quickly skim a list of actions and
themes in the query. In the future, the results could also be
presented in the context of a call graph [7], [8], [9]. This work

Search

e 00
| Task Search ' | 457 Git Search

| =;7File Search

CONQUER Search

\L_;'Java Search

Search Query: { add auction

Scope
() Workspace (o) Selected resources () Enclosing projects
() Working set: | Choose...
Ifi’??: | Customize... | | Cancel | [Search J

Figure 1. CONQUER is an Eclipse plug-in that adds a Conquer Search tab
to the general Eclipse Search dialog box.

could be enhanced in future by including semantically related
words [11], [10].

III. TooL OVERVIEW

The driving insight for our tool is that the same query
might be used to search for multiple information needs.
Our challenge is in designing a results view that meets the
needs of developers searching with queries that are ideal,
overly general, partially correct, or completely incorrect. Thus,
we designed the CONQUER results view to address 3 key
challenges:

1) Quickly determine if results are relevant (i.e., did the
query work?).

2) Find alternative query words to refine overly general
queries or substitute words in a partially correct query.

3) Find relevant results quickly.

To meet these challenges, we implemented CONQUER as
an Eclipse-plugin that allows developers to search any Java
software project. The search is integrated into Eclipse’s general
search dialog box with a CONQUER tab (see Figure 1). After
the developer enters a natural language query (i.e., a series of
keywords), the plug-in initiates the search mechanism [3].

The CONQUER tool gathers the results obtained from the
search and groups them by three categories: action, theme or
relevance score. These results are displayed in the view pane
in three individual sections in a tree structure based on the
action, theme or relevance score. The method signature of each
result is displayed as an Eclipse Java element, allowing the
developer to click on it to directly navigate to the source code
for that method (see Figure 4). While CONQUER can be used
to search for methods or fields, for this first phase we have
limited the scope to present only methods, leaving fields to
future work.

A. Prevalence of Query Words

The organization of the CONQUER results view provides
the developer with quick feedback on the relative frequency of
query words in the result set (see Figure 2). This information
allows the developer to quickly determine how well the results

match their information need (as expressed by the query),
and judge which words should be removed from inaccurate
queries.

For example, consider the query “mute music” searching
for the “mute” feature in music management software, where
the concept of ‘mute’ is more important to the feature than
‘music.” If ‘music’ is much more prevalent in the source
code than ‘mute’, it will fill the search results with irrelevant
entries, causing more work for the developer. The frequencies
next to each query word approximate each word’s power
to discriminate between relevant and irrelevant results. For
instance, if ‘music’ occurs 100 times in the result set and
‘mute’ just 4 times, the developer will know to revise the
query to focus on ‘mute’, since ‘music’ is likely to occur with
irrelevant results. This will also help the developer focus on
the concept of ‘mute’ in the other parts of the results view.

B. Suggested Alternative Query Words

Between the action and theme labels and the tree of ac-
tion/theme results, we display alternative query words to help
reformulate poor queries. As shown in Figure 3, these words
can help the developer refine or reformulate the query in cases
when the original query is overly general or inaccurate.

For example, consider searching for the shuffling global
playlist feature in a music player. A developer might first
enter the query “shuffle global playlist”, where the ideal query
for this particular search task is “shuffle queue”. CONQUER
will calculate the frequencies of the other action and theme
words that co-occur with shuffle and global, and suggest the
most highly co-occurring words as alternative query words.
As shown in Figure 3, ‘queue’ would be suggested as an
alternative word, helping the developer refine the query to
“shuffle global queue”, which is much closer to the ideal query.

C. Results Grouped by Action or Theme

When a query is not ideal, there still may be relevant
results buried in the bottom of the result list with a lower
score. We introduce two hierarchies of results, organized by
action and theme, to allow more opportunities for a variety
of search results to be displayed in the initial result view and
facilitate hierarchical navigation of the search results. These
two hierarchies are designed to allow the developer to locate
relevant results quickly, even for less than ideal queries.

The action section, depicted in Figure 2, displays the search
results in a tree structure grouped by the action. All the results
that have the same action are grouped into one category.
For example, methods saveFile(File) and saveText() would
belong to the same action category, “save”. Each category has
subcategories grouped by theme. In this example, “file” and
“text” would both be subcategories. CONQUER calculates
the maximum theme score for each subcategory and sorts
the categories based on it. CONQUER initially displays a
list of all the actions (categories), which can be expanded
to see the different themes (subcategories) that appear with
that specific action. The developer has the ability to expand

v Tasks | {_l ResultsView 3% < Search ©]Error Log

Query: mute (7) music (5)

Actions

Alternatives: mute, scan, register, update, test, get

V¥ mute
¥ support
@ mute() - DBusSupportimpl.java
@ mute() - DBusSupport.java
¥ player
@ ° mute(boolean) - Player.java
@ s mute() - Player.java

P test

Themes

Alternatives: support, bus, d, player

V¥ music
Vscan
® scanMusic(File, boolean, RefreshReporter) - Direc
¥ player
V¥ mute
© % mute(boolean) - Player.java
@ s mute() - Player.java
» mute

Figure 2. Results grouped by action (left) and grouped by theme (right), displayed in a tree structure.

Tasks (_l ResultsView 53 - Search ©]Error Log

Query: shuffle (20) global (12)

Actions

Alternatives: computes, forced, startup, shuffle, refresh, play

¥ shuffle
¥ queue
@ testShuffle() - TestQueueModel.java
® ®shuffle() - QueueModel.java
P index

Themes

Alternatives: global, queue, test, engine, startup, service

Vglobal
¥ shuffle
o [testShuffleGlobal() - TestDBusSupportimpl.java
® shuffleGlobal() - DBusSupportimpl.java
® shuffleGlobal() - DBusSupport.java

Figure 3. Alternative query words are shown above the action and theme sections.

each subcategory further and see the method signature of each
result, as displayed in Figure 2.

Similar to the action groups, the theme view displays the
search results, but the categories are formed by the themes and
the subcategories by the actions (see Figure 2). In this view,
saveFile(File) and openFile(File) would belong to the same
category, “file”. Under the “file” category CONQUER displays
subcategories “save” and “open”. CONQUER calculates the
maximum action score for each of the themes and sorts the
theme categories based on this score.

D. Results Grouped by Relevance Score

Unlike the tree views of the action and theme section, the
bottom of the result view simply displays the results in a list
sorted by overall score [3]. This section is most useful when
the query is on target and the relevant results are highly ranked.

The result phrase list view is closer to a more traditional
search results view, simply listing the methods and files where
matches occur. However, we go beyond a simple list view by
providing a short natural language phrase that describes each
method, to make the results easier to quickly skim without
requiring the cognitive overhead of mentally parsing the syntax
of method signatures and file names. This facilitates rapidly
scrolling through the results, to see what types of words and
phrases describe the methods appearing in the result set. In the
event of an ideal query, this section may contain the relevant
results at the top of the list.

IV. INITIAL USER FEEDBACK

We asked 13 Java developers with industry experience to
compare CONQUER (CONQUER) with Eclipse’s built-in File
Search (ECLIPSE). In analyzing the results, we observed that
there are certain situations that lend themselves to each search
mechanism. When a developer has an idea of the appropriate
identifier names to search for, they want to perform strict
matching of identifiers or keywords with an ECLIPSE-like
search. In contrast, when a developer is not familiar with a
codebase or its naming conventions, and has no insight into
what identifiers would be relevant, they need the support of
a natural language search provided by CONQUER. Providing
a flexible interface for either scenario will further enable
the developer to use a single search interface for all their
search needs. Future work will investigate how to integrate that
customizability in an intuitive way, without using too much
screen real estate.

In general, participants appreciated the alternative query
words suggested. In fact, some participants requested suggest-
ing synonyms as well co-occurring words. In future, we would
like to explore using synonyms as well co-occurring words.
In future, we would like to explore using synonyms [11], [10]
to enhance the suggested alternative query words.

V. CONCLUSION

In this paper, we present CONQUER, a tool for NL-based
query refinement and contextualizing source code search re-

public AuctionInfo addAuction[(URL auctionURL, String item_id) {

SpecificAuction newAuction = (SpecificAuction) loadAuction(auctionURL, item_id, nul’

return(newAuction);

3

Tasks L ResultsView 3% Search

Query: auction (128) add (55)

Actions

Alternatives:

Error Log

auction, title, string, count, finish, unregister, pre

Themes

Alternatives: auction, entry, string, token, new,

¥ add P link
V¥ auction P menus
@ addAuction(URL, String) - AuctionServer.java » USD
m addAuction(String) - JBidProxy.java Vadded
m addAuction(String) - JBidMouse.java Vget
@ addAuction(AuctionEntry) - FilterManager.java @ getjustAdded() - AuctionEntry.java
@ addAuction(String) - AuctionServer.java P input
P queue P pasting
[Phrase All Results File
add auction m addAuction(String) JBidMouse.java
add auction m addAuction(String) JBidProxy.java
add entry @ addEntry(AuctionEntry) Auctions.java
add ae @ add(AuctionEntry) MultiSnipe.java
add auction @ addAuction(String) AuctionServer.java
add auction @ addAuction(URL, String) AuctionServer.java
add entry @ addEntry(AuctionEntry) AuctionsManager.java
add auction @ addAuction(AuctionEntrv) FilterManaager.iava

Figure 4. The CONQUER results view displays 3 sections: grouped by action, grouped by theme, and all results sorted by relevance score.

sults. It allows developers to quickly understand and determine
if the query they use to search the source code returns relevant
results, and if not, help identify related words to reformulate
the query. These insights into the search results can reduce the
overall time developers spend in maintenance tasks by helping
them locate relevant code more quickly. In future work, we
anticipate integrating these techniques into a Visual Studio
search framework such as Sando [5].

CONQUER can be downloaded from http://lee.cs.montclair.
edu/~hillem/CONQUER/.

REFERENCES

[1] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu, “Source
code exploration with Google,” in ICSM ’06: Proceedings of the 22nd
IEEE International Conference on Software Maintenance (ICSM’06),
2006, pp. 334-338.

T. Savage, M. Revelle, and D. Poshyvanyk, “Flat3: feature location and
textual tracing tool,” in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 2, ser. ICSE *10.
New York, NY, USA: ACM, 2010, pp. 255-258.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in ASE ’11: Proceedings of the 26th IEEE International Confer-
ence on Automated Software Engineering, short paper. Washington,
DC, USA: IEEE Computer Society, November 2011.

, “Automatically capturing source code context of NL-queries for
software maintenance and reuse,” in ICSE '09: Proceedings of the 31st
International Conference on Software Engineering, 2009.

[2]

[3]

[4]

[5] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an
extensible local code search framework,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ser. FSE "12. New York, NY, USA: ACM, 2012, pp. 15:1—
15:2.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighborhood
with Dora to expedite software maintenance,” in ASE '07: Proceedings
of the 22nd IEEE International Conference on Automated Software
Engineering (ASE’07). Washington, DC, USA: IEEE Computer Society,
November 2007, pp. 14-23.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfo-
lio: a search engine for finding functions and their usages,” in Proceeding
of the 33rd international conference on Software engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 1043-1045.

G. Scanniello and A. Marcus, “Clustering support for static concept
location in source code,” in 2011 IEEE 19th International Conference
on Program Comprehension (ICPC), june 2011, pp. 1 —10.

D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in AOSD ’07: Proceedings of the 6th International
Conference on Aspect-Oriented Software Development, 2007.

J. Yang and L. Tan, “Inferring semantically related words from soft-
ware context,” in Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, 2012, pp. 161-170.

M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker,
“Automatically mining software-based, semantically-similar words
from comment-code mappings,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, ser. MSR ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 377-386. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487155

[6]

[7]

[8]

[9]

[10]

(11]

