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Quantum interference in a lambda system
driven by non-overlapping pulses with the

same carrier frequency
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This article describes quantum interference in a lambda system driven by two identical pulses that are each
sufficiently broadband to drive both dipole-allowed transitions. The first pulse drives the system into a quan-
tum superposition, making the effect of the second pulse depend critically on its optical phase and resulting in
Ramsey-like fringes. This method, using just two pulses of the same carrier frequency, is conceptually simpler
than in previous Raman–Ramsey studies, which use pump and Stokes pulses in each of two spatially separated
regions. The goal here is not efficient population transfer, but to investigate narrow features resulting from
quantum interference. I first explore these effects for low-inversion, which illustrates many key features using
an easy-to-visualize model. I then use Schrödinger’s equation in a semiclassical model to extend the results to
arbitrary inversion. Informative quantum interference features remain when using this simplified scheme.
© 2010 Optical Society of America

OCIS codes: 020.1670, 190.5650, 300.6450.
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. INTRODUCTION
amsey-fringe techniques [1–3] have a long and impor-

ant history, including applications to time and frequency
tandards [4–14] and spectroscopy [15–23]. An important
ubset of the literature addresses quantum interference
ffects, including Ramsey-like fringes, in the case of three-
evel systems [6,7,17,24–36]. Ramsey-type work, in which

three-level � system is driven from one lower state to
he other via a stimulated Raman transition, is some-
imes aptly called “Raman–Ramsey” work. Interference
ffects in three-level systems driven by pulse pairs also
ave applications in coherent control [37,38] and for se-

ecting a narrow velocity distribution of atoms [39,40].
here are calculations addressing the interaction of a
hree-level system with a quantized field (e.g., [26,41,42]).

subset of this work, e.g., in [32,35,36], involves driving
he system into a dark state; the advantages of such
chemes are discussed therein.

With many variations possible, an archetypical stimu-
ated Raman–Ramsey setup can be pictured as a beam of
hree-level � atoms or molecules sent through two inter-
ction regions. In each interaction region, the � system
nteracts with a pump and a Stokes electromagnetic field.
n zone one, the � system is driven into a coherent super-
osition state. The later interaction, in zone two, depends
ensitively on the phase relation between the driving
elds in zone two and the quantum phase of the � system,
hich precessed freely between the zones. The physical

easons for this phase sensitivity are fundamentally simi-
ar to the case of traditional Ramsey fringes in a two-level
ystem, as discovered in the Nobel Prize winning work of
amsey [1,3].
This article uses a straightforward semiclassical model
0740-3224/10/081543-8/$15.00 © 2
o study a case that is different from the cases studied in
he work cited above: it explores the quantum interfer-
nce structure that results from a simplified technique us-
ng just one pulse, of one carrier frequency, in each inter-
ction region instead of using pump and Stokes beams.
he amplitude and duration of the pulses are the same in
ach interaction region. The pulses are modeled as per-
ectly coherent pulses with a single carrier frequency and
quare envelopes. They are not few-cycle or “ultrashort”
ulses, but are short enough to have sufficient bandwidth
o drive both dipole-allowed transitions. Although the cal-
ulations below scale, a good exemplar case is the “optical
amsey” case, with optical dipole-allowed transitions and
ith hyperfine splitting between the two lower states.
he results below (i) show that a Ramsey-like fringe
tructure is still present and (ii) explore how the fringe
tructure changes as the relevant parameters change.

. MODEL
igure 1 shows the system of interest: a � system with
nergy levels �i=��i �i=1,2,3�, where the lowest level is
hosen to have �1=0. In frequency units, the separation
etween the lower levels is

� � �3 − �1 = �3. �1�

he � system is driven by an optical beam having carrier
requency �. The overall detuning �, as shown in Fig. 1, is

� � �0 − �, �2�

here � is the average resonant frequency;
0

010 Optical Society of America



t
h
i

T
F
t

v
d
g
t
c
c
n
F
i
e
m
|

(
e
v
t
t
z
s
p
p

t
a
s
t
l
f
p
q
w
s
e
h
v
s

w

E
fi
c
a
h
t
m
t

3
T
a
t
t
d
b

w
a
s

F
e
w
u

F
s
o
t
r
c
�
n

1544 J. Opt. Soc. Am. B/Vol. 27, No. 8 /August 2010 James M. Supplee
�0 � �2 −
�1 + �3

2
= �2 −

�3

2
; �3�

he last equality follows because �1 is taken to be zero
ere. The single-photon detuning of the |1�-|2� transition

s

�1 � �2 − � = � +
�

2
. �4�

he last equality in Eq. (4) follows immediately from
ig. 1. �3 is defined analogously to �1; it is the detuning of

he |2�-|3� transition from single-photon resonance:

�3 � �2 − �3 − � = � −
�

2
. �5�

Traditionally, the stimulated Raman–Ramsey effect in-
olves a pump beam, generally nearly resonant with the
ipole-allowed |1�-|2� transition, and a Stokes beam,
enerally nearly resonant with the dipole-allowed |2�-|3�
ransition. In this article, however, I consider only one
arrier frequency �. It is worth noting that with only one
arrier frequency, the system is never on two-photon reso-
ance; it is always detuned by the |3�-|1� splitting �.
rom an energy point of view, one might say that energy

s conserved because the pulse bandwidth allows the en-
rgy absorbed by the |1�-|2� transition to be slightly
ore than the energy emitted into the pulse by the |2�-

3� transition.
This article addresses the response of a � system

called an “atom” for convenience) to two optically coher-
nt pulses. The pulses are modeled as having square en-
elopes. For discussing the quantum interference due to
wo pulses, we can imagine atoms passing through two in-
eraction zones, or atoms passing through one interaction
one twice, or two consecutive pulses hitting an atomic
ample. Depending on the experimental details, the
ulses can hit the atom with a zero or with a non-zero
hase shift, as illustrated in Figs. 2(a) and 2(b), respec-

ig. 1. “Resonant” frequency �o is defined as the energy differ-
nce (in frequency units) measured from the upper level to mid-
ay between the lower levels. The detuning is ���o−�. The fig-
re is drawn with �	0.
ively. Case (a) might, for example, be obtained by pulsed
mplification of a coherent cw laser. Case (b), with a
table but non-zero phase shift, could be obtained by split-
ing a pulse and sending one copy through an optical de-
ay line. For case (b) a very small change in T (say by a
raction of an optical cycle) causes a change in the optical
hase of the second pulse [16]. Therefore, case (b) re-
uires controlling T with interferometric precision, as
as done, for example, by Scherer et al. [43]. With a

table phase relation, quantum interference can result in
ither case, and the distinction between cases (a) and (b)
as often been discussed, e.g., in [16,35,44–46]. For con-
enience and tractability, this article takes the phase
hift as zero, using

E�t� = f�t�cos��t�, �6�

here

f�t� = �E0 0 � t � � and T � t � T + �

0 otherwise � . �7�

0 is real here, because the absolute phase of the driving
eld is not critical. The overall phase represented by a
omplex E0 would be significant if the envelope were only
few optical cycles or less in duration [46]. In this article,
owever, the critical phase of interest is the phase rela-
ion between the second pulse and the oscillating dipole
oments. That phase is most directly controlled by T and

he detunings, not by any overall phase contained in E0.

. EQUATIONS
his section gives the equations of motion for the prob-
bility amplitudes in the Schrödinger picture. The solu-
ions to these equations will be plotted in Sections 4 and 5
o explore the behavior of the system under various con-
itions. The basis states are the energy eigenstates of the
are atom: �j�, �j=1,2,3�. So we have

Ĥ0�j� = �j�j�, �8�

here Ĥ0 is the Hamiltonian of the unperturbed atom
nd �j is the energy of state �j�. An atomic superposition
tate can be written

ig. 2. (a) The two pulses are different parts of the same sinu-
oid. This could, for example, be obtained by pulsed amplification
f a stable cw laser. (b) The second pulse is a time-delayed copy of
he first pulse. Unless T is an integer multiple of the optical pe-
iod, the second pulse will not be in phase with a mathematical
ontinuation (shown dotted) of the first pulse. In both (a) and (b),
is the duration of each pulse, and T is the time from the begin-
ing of the first pulse to the beginning of the second pulse.
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�
� = C1�t�e−i�1t�1� + C2�t�e−i�2t�2� + C3�t�e−i�1t�3�. �9�

his phase choice results in constant coefficients in the
oupled differential equations (below) for the C’s when the
aser is on.

The time development of the atomic state is given by
chrödinger’s equation,

d

dt
�
� = −

i

�
�Ĥ0 + V̂�t�	�
�, �10�

here V̂�t� is the interaction Hamiltonian. Approximating
ˆ �t� using the customary dipole approximation [47,48]
ives

Vij = − qe
i�x̂�j�f�t�cos��t� = ��ij�t�cos��t�. �11�

ere qex̂ is the atomic dipole moment expectation value
perator projected onto the axis of the optical field polar-
zation. �ij�t��−qe
i�x̂�j�f�t� /� is the usual Rabi frequency,
epresenting the interaction energy in frequency units.
he only non-zero matrix elements Vij are for the dipole
llowed transitions: V12=V21

* and V23=V32
* . This allows for

slight simplification in notation as shown in Fig. 1:
12→�1 and �23→�3. For convenience, I take the �i as

eal. (See, e.g., [49], pp. 780, 781.)
Using the wave function, Eq. (9), in the Schrödinger

q. (10) gives the differential equation for the time evolu-
ion of the C’s:

�Ċ1 − i�1C1�e−i�1t�1� + �Ċ2 − i�2C2�e−i�2t�2�

+ �Ċ3 − i�1C3�e−i�1t�3�

= −
i

�
�VC1e−i�1t�1� + ��2 + V�C2e−i�2t�2�

+ ��3 + V�C3e−i�1t�3�	. �12�

sing the usual techniques [47–50], including the rotat-
ng wave approximation and the dipole approximation,
he time evolution of the C’s can be extracted from Eq.
12) and is

Ċ1 =
i

2
�2�1C1 − �1C2�; �13�

Ċ2 = −
i

2
��1

*C1 + �3C3�; �14�

Ċ3 = −
i

2
��3

*C2 − �3C3�. �15�

he simplicity of these equations is the result of the ap-
roximations mentioned just above and also because V11
V22=V33=V13=0.
Writing Eqs. (13)–(15) together in matrix form yields

d

dt
C = −

i

2
MC, �16�

here C��C ,C C 	T, and
1 2, 3
M � �
− 2�1 �1�t� 0

�1
*�t� − i� �3�t�

0 �3
*�t� − 2�3

� . �17�

he i� term has been appended to allow for relaxation of
he upper state out of the system.

. SHORT, WEAK PULSE LIMIT
. Solution
he case of short, weak pulses (�1/�i and low inversion)
llows for conceptual and mathematical simplification,
hich facilitates checking some fundamentals. The re-

ults in this section are consistent with intuition carried
ver from traditional Raman–Ramsey studies (using
ump and Stokes beams), and also somewhat resemble
he simpler case of Ramsey fringes in a two-level system.
ood agreement between Sections 4 and 5 also shows that

he intuition developed in Section 4 can facilitate under-
tanding of the more formal and general results in Sec-
ion 5.

Consider (throughout this article) an atom starting in
he lowest state |1�. An optical pulse then drives the atom
nto a superposition state. In the “weak pulse limit” (this
ection), the first pulse will leave most of the population
n state |1�. Some of the population will be driven to state
2�, and a small fraction to state |3�. But what about the
econd pulse? A reasonable guess is that the second pulse
ill drive more population along this two-step path (that

s, will cause constructive interference) if the second pulse
s in phase with the already oscillating dipoles. By the
efinition of detunings, the driving field � drifts out of
hase with the freely oscillating |1�-|2� and |2�-|3� di-
oles at a rate given by the detunings �1 and �3. If the
eld drifts out of phase by a whole number of cycles, then

t is back in phase. That is, the second pulse will arrive in
hase with each oscillating dipole transition if

�1T = 2n� �18�

nd

�3T = 2m�, �19�

here n and m are integers. (These pulse delay conditions
ave a similar significance [51] in frequency comb calcu-

ations.) If the pulse is to be in phase with both oscilla-
ions, then the oscillations must be in phase with each
ther. That is, the |1�-|2� oscillation and the |2�-|3� os-
illation should have drifted out of phase by 2p� where p
s an integer:

��2 − �1�T − ��2 − �3�T = �3T � �T = 2p�. �20�

ut differently, Eq. (20) can also be obtained by simply
ubtracting Eq. (19) from Eq. (18).

Equations (18)–(20) can be supported further by solv-
ng Eq. (16). For simplicity in the examples below, con-
ider the Rabi frequencies to be equal:
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�1�t� = �3�t� = ��, pulse on

0, pulse off� . �21�

or a weak pulse, most of the population will remain in
tate |1�. A small fraction of the population will be driven
o state |2� and a still smaller fraction to state |3�. That
s,

�C1�  1 and �C3�  �C2�  1. �22�

hese approximations simplify the differential equations
or the C’s, Eqs. (13)–(15). Neglecting C2 compared to C1,
q. (13) for C1 integrates to

C1 = ei�1t. �23�

oving on to C2: neglecting decay ��0�, neglecting C3

ompared to C1, and using Eq. (23), Eq. (14) becomes

E
(
t

t

F
(
t
f
E
s
d

Ċ2  �−
i

2
�ei�1t, pulse on

0, pulse off
� . �24�

imilarly, Eq. (15) for C3 simplifies to

Ċ3  �−
i

2
�C2, pulse on

i�3C3, pulse off
� . �25�

he “pulse-off” part is taken exactly from Eq. (15), while
he “pulse-on” part has been simplified by dropping the C3
erm because it is assumed small compared with the C2
erm.
The approximate solutions to Eqs. (24) and (25) are
C2 �
−

i�

2
t, 0 � t � �

−
i�

2
�, � � t � T

−
i�

2
�� + �t − T�ei�1T	, T � t � T + �

� ; �26�

C3 �
−

�2

8
t2, 0 � t � �

−
�2

8
�2ei�3t, � � t � T

−
�2

8
�2��t − T� + �t − T�2ei�1T + �2ei�3T	, T � t � T + �

� . �27�
qs. (26) and (27) come from integrating Eqs. (24) and
25) three times: for the first pulse, for the dark time be-
ween pulses, and for the second pulse. The integration
onstants make the C’s continuous at the boundaries. I
lso used the “short-pulse” approximation

�  1/�i �in this section�, �28�

y using ei�i�1. In words: the assumption in this section
unlike Section 5) is that the pulse bandwidth is much
reater than the detunings. This is the physical reason
hy some expressions above are insensitive to the detun-

ngs; for example, there is no detuning in the expressions
or C2 or C3 at the end of the first pulse. Detuning insen-
itivity when using a single broadband pulse is a stan-
ard textbook result; e.g., the top line of Eq. (26) matches
q. (2.8.14) of [48].
The final value of C3 is given by evaluating Eq. (27) at

=T+�, yielding

C3
f  −

�2

8
�2�2 + ei�1T + ei�3T�. �29�

he final population in state |3� is given by
P3 = �C3
f �2 

�4

64
�4�2 + ei�1T + ei�3T��2 + e−i�1T + e−i�3T�

=
�4�4

32
�3 + 2 cos �1T + 2 cos �3T + cos �T�. �30�

quation (30) agrees with the intuitive results in Eqs.
18)–(20) above: the population will be largest when the
hree cosines in Eq. (30) are near 1.

Using Eqs. (4) and (5) allows rewriting Eq. (30) in
erms of the overall detuning � as

P3 =
�4�4

32 �3 + cos �T + 4 cos �T cos
�T

2 � . �31�

igure 3 shows P3 versus � for three different values of T.
Reassuringly, a plot for the same parameters made using
he more formal results of Section 5 is indistinguishable
rom Fig. 3.) Because the variable � appears just once in
q. (31), the curves for various T are simply scaled and
hifted cosines. For both the heavy solid curve and the
ashed curve in Fig. 3, T is chosen so that cos��T /2�=1.
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herefore, the term in parentheses varies from zero to 8.
he FWHM of each fringe is � /T. The dashed curve has T

hree times as long as the heavy solid curve, so the fringes
re one-third as wide. All of the fringes in Fig. 3 are much
arrower than the bandwidth of a single pulse, which is of
rder 1/�. (1 /� equals 20 in the units of Fig. 3.) Having
ringe width governed by 1/T rather than 1/� is a hall-
ark of traditional Ramsey fringes; Fig. 3 shows that this

rucial property carries over to the nontraditional case
onsidered in this article.

The light solid curve in Fig. 3 illustrates how the prod-
ct �T can affect the interference amplitude. In Eq. (31),
he term cos��T /2� multiplies the oscillating term and
herefore sets the scale of the oscillation. Because that co-
ine can range between −1 and +1, the oscillation will
cale and can change sign as T changes. The light solid
urve shows a case with cos��T /2� negative, so the oscil-
ations are inverted. Also, because cos��T /2� is not all the
ay to −1, that curve has smaller oscillations.

. Frequency Domain Discussion
quations (18)–(20) above, along with the basic structure
f Fig. 3, are consistent with intuition about “in-phase
iming” for constructive interference. For low inversion,
he resonance structure can also be understood from the
requency domain point of view, which is widely used; see,
.g., [1,2,52,53].

Effectively picturing the frequency domain requires
eeping in mind that the pulses are broadband. In the
ime domain, Fig. 2(a) might have tempted one to say
imply that the second pulse is “in phase” with the first.
owever, each pulse has a frequency spectrum, and vari-

us frequency components will have various phase rela-
ions. The main issue is not necessarily whether the car-
ier frequency is in phase from pulse to pulse, but
hether the frequency components matching the allowed

ransitions interfere constructively. This issue of pulse-
o-pulse interference also arises for a similar reason
n frequency-comb spectroscopy. (See, e.g.,
9,22,23,51,54–56].) Frequency-comb work is in a differ-
nt parameter regime than the one addressed here; it ad-
resses the more extreme case of ultrashort coherent
ulses. Because of their extreme bandwidth, ultrashort
ulses can interfere constructively at many frequencies,
ence giving rise to the “frequency comb.” Although the
arameter regime is different in that work and this, the
hase delay concept is of similar importance. For ex-
mple, [51] (p. 7) describes the pulse-to-pulse interference

ig. 3. Final population in state �3� as a function of detuning �.
ll curves have �=10 and � =0.05 in units chosen so that � =1.
he heavy solid curve has T=4�; the dashed curve has T=12�;
he light solid curve has T=5.3� (to illustrate a non-integer mul-
iple of �). As is typical with Ramsey fringes, the fringe width is
f order 1/T. In contrast, a single pulse of duration �=0.05 would
esult in a peak much broader than the entire figure.
equirement in their case “by noting that for the laser
odes to match both atomic transitions, then the differ-

nce between the atomic frequencies must be equal to
ome multiple of the mode spacing 2� /T.” That point of
iew agrees with Eq. (20) above. For this article, I will
ontinue the discussion in the time domain, and now turn
o the more general case, including arbitrary inversion.

. GENERAL CASE, INCLUDING
RBITRARY INVERSION
. General Solution
he approximate solution for the population in state |3�,
q. (31), is useful because it reveals the physics effec-

ively; it explicitly displays how each parameter enters.
ven when discussing the exact solution below, I will
ometimes refer back to Eq. (31), because it can make the
hysics transparent.
To obtain a more general solution that holds for arbi-

rary inversion, we can directly integrate Eq. (16), giving
he formal solution

C�t� = e
−

i
2

Mt
C�0�. �32�

quation (16) could also be addressed by finding the ei-
envalues and eigenvectors of M, but that algebra yielded
o further physical insight, so I will leave the general so-

ution written compactly as Eq. (32). For plotting the vari-
us cases below, I used a power series expansion of the ex-
onential in Eq. (32), while keeping enough terms to
nsure that each plot represents the actual solution. The
umber of terms needed depends on the parameters.
Finding the final population in state |3� requires step-

ing through the “on-off-on” pulse sequence, much like in
he previous section. C��� is given by evaluating Eq. (32)
t t=�, and with the atom starting in the ground state
T�0�= �1,0,0�. The “pulse-off” part of the evolution is

imple: putting both Rabi frequencies equal to 0 in M
hows that the atom simply precesses and decays. There-
ore at the end of the “off-time” we have

C1�T� = ei�1�T−��C1���,

C2�T� = e
−

�

2
�T−��

C2���,

C3�T� = ei�3�T−��C3���. �33�

hese coefficients become the initial conditions for the
econd pulse. The effect of the second pulse is calculated
n the same way as for the first pulse: by using Eq. (32),
ut with the initial conditions appropriate for the second
ulse,

Cf = e
−

i
2

M�
C�T�. �34�

he final upper-state population is

P3 = �C3
f �2. �35�

. Agreement in the Low Inversion Case
n any situation to which the assumptions of Section 4 ap-
ly, Eq. (31) and Eq. (35) agree. For example, for the three
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urves plotted in Fig. 3, Eqs. (31) and (35) give indistin-
uishable results. The reason for presenting both equa-
ions is this: Eq. (35) applies more generally, because nei-
her the low inversion approximation [Eqs. (22)] nor the
hort-pulse approximation [Eq. (28)] was used. However,
he more restricted result, Eq. (31), is useful because it
xplicitly displays the parameter dependence, allowing
or a more intuitive understanding of the physics.

. Velocity Averaging
or the case of an atomic beam traveling through two in-
eraction regions, different atoms have different speeds,
nd hence have different travel times; that is, different
toms have different T. This is a Doppler broadening ef-
ect that is considered disadvantageous in some circum-
tances, but in Ramsey experiments it offers the impor-
ant advantage of identifying the main peak at �=0. This
dvantage is important enough that averaging over T is
ften artificially introduced into two-pulse experiments
ith trapped atoms by using a range of optical pulse de-

ays and then averaging the results (e.g., in [2,18,57,58]).
he point of averaging over T in a two-pulse experiment
sing two-level atoms is this: the constructive interfer-
nce peak with zero detuning remains, because a reso-
ant drive stays resonant regardless of the dark time.
owever, constructive interference peaks due to a relative
hase shift between pulses of 2�, 4�, 6�, etc., are washed
ut, because having those phase delays is T-dependent.
ecause the side peaks wash out, the central peak can be
nambiguously identified. The results in this subsection
how that for three-level atoms, averaging over T depends
n the averaging interval in a more complex way.

A great deal can (and has) been said about the details of
elocity averaging. The details depend on many factors,
ncluding whether the variation in T is due to a spread of
tomic velocities in a beam or due to controlled variation
f two pulses interacting with a sample of trapped atoms.
his article does not address a myriad of averaging
chemes; rather, it addresses two core issues: (1) Do the
ringes remain after velocity averaging? (They do.) (2)
ow does changing the range of delay times T included in

he averaging affect the signal?
The T averaged results shown as bold curves in Fig. 4

re obtained by a simple boxcar average,

P3
avg��,Tmax,Tmin� =

1

Tmax − Tmin
�

Tmin

Tmax

P3��,T��dT�.

�36�

he bold curves in Figs. 4(a)–4(c) show a striking varia-
ion, which is due solely to their having different averag-
ng limits. The progression in Fig. 4 can be understood
ith the help of Eq. (31) (even thought the more precise

esults of Section 5 were used to make these graphs). The
ot-velocity-averaged (dashed) curves in Fig. 4 are funda-
entally the result of the cos �T term in Eq. (31). As men-

ioned earlier in connection with two-level systems, this
erm is positive when �=0 regardless of T. That is why
he �=0 peak does not wash out in the averaging for a
wo-level atom. However, some additional complexity of a
hree-level atom is revealed by the cos��T /2� term that
ultiplies cos �T in Eq. (31). The cos��T /2� term changes
ign if T is varied greatly, eventually causing the �=0
eak to wash out. Figure 4 shows an example of such a
rogression. In Fig. 4(a), the range of velocity integration
s T=4�±1, in units with �=1. The purpose of this choice
s to keep cos��T /2� always positive. This makes the last
erm in Eq. (31), evaluated at �=0, 4�1� �a positive�.
veraging over just positive numbers retains the peak at
=0. In Fig. 4(b), the solid curve is averaged over T
4�±4, which includes some negative values of
os��T /2�, thereby reducing the height of the main peak.
his broader range of T is sufficiently large that the non-
entral peaks are averaged over enough positive and
egative values to wash out. This is a hallmark of the ef-
ect of velocity averaging in Ramsey fringes.

Figure 4(c) uses an even broader range of T in averag-
ng, and reveals an effect with no exact equivalent in
amsey fringes for two-level systems. Figure 4(c) can be

hought of algebraically or physically. In algebraic terms,
he product of cosines in Eq. (31) will include both positive
nd negative numbers, and will therefore average to near
ero if an extremely wide range of T is sampled. The ex-
eption to that is when �= ±� /2; for that case, the last
erm in Eq. (31) is a cosine squared term, and will there-
ore never average to zero. In physical terms, �= ±� /2 is
here the carrier is resonant with one of the dipole-
llowed transitions, as shown by Eqs. (4) and (5). Hence,
he peaks at �= ±1/2 (in units where �=1) in Fig. 4(c)
how the allowed transition frequencies. This is an inter-
sting shift—from identifying the central fringe at �=0,
o identifying the two dipole-allowed resonances.

Figure 5(a) further illustrates how Eq. (31) can afford
ome simple understanding of population inversion. First,

ig. 4. The only change among the three graphs is the velocity
veraging interval. All three graphs have �=5 and � =0.2 in
nits chosen so that � =1. For comparison, the dashed curves
how the non-velocity-averaged population in state �3� as a func-
ion of detuning for a pulse delay of T=4�. The solid curves show
he result when averaged using Eq. (36). (a) Averages over T
4�±1. (b) Averages over T=4�±4. (c) Averages from T=4�
10 to 4�+40. The purpose of the asymmetric averaging interval

n (c) is simply to allow a very large range of T without going be-
ow �, which would be unphysical. The striking qualitative
hange is discussed in the text.
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ince the important cos��T� term contains � and T only
s a product, the graph shows basically hyperbolic con-
ours, because the product is constant along hyperbolas.
econd, Eq. (31) clearly reveals why the contours flip from
lack to white along horizontal bands at T=� and 3�.
his is because the cos��T� term causing the hyperbolas

s multiplied by cos��T /2�, which changes sign at T=�
nd 3�.
Comparing Figs. 5(a) and 5(b) shows that using Eqs.

18) and (19) to get a good sense of inversion is justified
ven for nontrivial inversion. Figure 5(a) shows the actual
nversion as a function of � and T, while Fig. 5(b) shows
here one might have casually guessed inversion would
e large. The guess in Fig. 5(b) is simply a plot of
os��1T�+cos��3T�, chosen because that expression gives
crude map of where Eqs. (18) and (19) are true. More

recisely, cos��1T�+cos��3T� is contained in the middle
erm in Eq. (30), which reveals the same physics.

. Longer Pulses
here is another way (besides averaging over T) to iden-

ify the central interference peak. Figure 6 illustrates
his. The dashed curve in Fig. 6 is identical to the dashed
urves in Fig. 4. The heavy solid curve in Fig. 6 shows the
ffect of increasing �. There is no velocity averaging what-
oever in Fig. 6; rather, increasing � simply gives the
ulses a narrower bandwidth and identifies the central
eak. The lighter solid curve in Fig. 6 shows that decay
��0� has the expected effect of lowering the signal.

ig. 6. The dashed curve is identical to those in Fig. 4, again
aving T=4�, �=5, and � =0.2 in units chosen so that � =1. The
eavy solid curve has � =4, giving the pulse a narrower band-
idth and hence identifying the central peak. The pulse area is

he same in both cases, with �� =1. The lighter solid curve con-
rms that decay �� =0.2� simply lowers the overall signal. There

s no velocity averaging in this figure.

ig. 5. (a) Population in state �3� versus detuning � and pulse
elay time T. Units are chosen so that � =1. The other param-
ters are � =0.2, �=7, and � =0. The maximum population is
.49 and is indicated by white; black indicates no population in

3�. (b) White indicates places where one would have expected
igh inversion from the extremely naïve guess based on Eqs. (18)
nd (19). The agreement is quite good, considering that the naïve
uess should become less and less reliable as inversion increases.
. CONCLUSIONS
pulse of sufficient bandwidth can drive both dipole-

llowed transitions in a � system. Two optically-coherent
ulses can cause quantum interference effects: the first
ulse leaves the atom in a superposition state, and the ef-
ect of the second pulse depends critically on its phase re-
ation with the already-excited system. This article dem-
nstrates that such stimulated Raman–Ramsey quantum
nterference effects can be studied in a simplified

anner—using a total of just two pulses of one carrier
requency, rather than using the traditional pump and
tokes fields in each interaction. The physics underlying
he resulting quantum interference effects has been ex-
lored and illustrated in detail here using a straightfor-
ard semiclassical model.
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