
Which Feature Location Technique is Better?
Emily Hill1, Alberto Bacchelli2, Dave Binkley3, Bogdan Dit4, Dawn Lawrie3, Rocco Oliveto5

1Montclair State University, Montclair, NJ, USA
2University of Lugano, Switzerland & Delft University of Technology, The Netherlands

3Loyola University Maryland, Baltimore, MD, USA
4The College of William and Mary, Williamsburg, VA, USA

5University of Molise, Pesche (IS), Italy
hillem@mail.montclair.edu, a.bacchelli@tudelft.nl, binkley@cs.loyola.edu,

bdit@cs.wm.edu, lawrie@cs.loyola.edu, rocco.oliveto@unimol.it

Abstract—Feature location is a fundamental step in software
evolution tasks such as debugging, understanding, and reuse.
Numerous automated and semi-automated feature location tech-
niques (FLTs) have been proposed, but the question remains:
How do we objectively determine which FLT is most effective?
Existing evaluations frequently use bug fix data, which includes
the location of the fix, but not what other code needs to be
understood to make the fix. Existing evaluation measures such
as precision, recall, effectiveness, mean average precision (MAP),
and mean reciprocal rank (MRR) will not differentiate between
a FLT that ranks higher these related elements over completely
irrelevant ones. We propose an alternative measure of relevance
based on the likelihood of a developer finding the bug fix locations
from a ranked list of results. Our initial evaluation shows that
by modeling user behavior, our proposed evaluation methodology
can compare and evaluate FLTs fairly.

Index Terms—Feature location, Concern location, Relevance
measures, Empirical studies

I. INTRODUCTION

Feature location in software, also called concept or concern
location, is the process of identifying the source code elements,
such as methods or files, that implement a user-observable
feature [1], [2]. Feature location is a fundamental step in
software evolution tasks such as debugging, understanding,
and reuse. Researchers have proposed numerous automated
and semi-automated feature location techniques (FLTs) [3],
which usually recommend a ranked list of elements to be
examined by a developer. Existing approaches to evaluating
feature location techniques have predominantly used bug fixes
automatically mined from source code repositories [3], [4].
The locations of the fix are likely relevant, but what about the
code that must be understood to implement the fix?

Let us make the parallel that navigating a software system’s
source code is like traveling the globe. You are a developer in
New York, trying to reach San Francisco, where you need
to fix a bug. Recommender A gives you directions to St.
Petersburg, Russia, which you immediately recognize as bad
directions to an unrelated continent. Recommender B gives
you directions to Los Angeles, which you follow, eventually
realizing that you are still not that close to San Francisco.
Finally, Recommender C gives you directions to Berkeley,
and from there you can successfully navigate to your final
destination. If Recommender C had been your first choice, you

would have saved navigation time. This parallel illustrates the
plight of a developer using FLTs in trying to locate source code
during a software maintenance task in unfamiliar software. In
this paper, we propose a way to differentiate between FLTs
that send developers to Russia over Berkeley.

Going back to code, consider the following scenario with
two FLTs, A and B. In the top 5 recommended code ele-
ments, FLT A recommends 4 methods that would need to
be understood to implement the fix, and one fix location at
rank 5. FLT B also recommends the fix location at rank 5,
but the methods at ranks 1 through 4 are irrelevant (i.e., are
part of unrelated areas of the software system). Although A is
intuitively better than B, the current measures commonly used
to compare FLTs, e.g., precision, recall, effectiveness, mean
average precision (MAP), or mean reciprocal rank (MRR) [5],
would mark them as equally effective.

An alternative to bug fix data is to have developers man-
ually locate features in code [6], [7]. This process can be
dependent on the annotators, and may change depending on
the expertise, experience, and primary evolution task being
undertaken. Prior attempts to create such gold sets have found
very little agreement between annotators [7], which is also
supported by anecdotal evidence from the authors’ experiences
in gathering gold sets. The main advantage of bug fix data
is its objectivity: given a bug report, the bug fix confirms
code locations that were actually changed to implement a
modification to the feature as described by the bug report.
Nevertheless, by using bug fix data we are faced with the
challenge of fairly evaluating our hypothetical FLTs A and B.
We support the use of bug fix data to objectively evaluate
FLTs, but we propose an alternative measure of relevance
based on the likelihood of a developer finding the fix locations.

In this paper, we introduce rank topology, a metric for com-
paring FLTs. We evaluate our proposed measure by running
a FLT based on a state of the art Information Retrieval (IR)
technique with different randomly generated lists of results that
have the same ranks for the relevant code elements but contain
other important code elements at different ranks. Our goal is
to determine whether our rank-topology metric can distinguish
between different lists where the relevant documents (i.e., bug
fixes) have exactly the same ranks.



II. THE RANK TOPOLOGY APPROACH

Our goal is to distinguish between FLTs that rank higher
documents closely related to the bug fix than completely
unrelated ones. Ideally we would like to mimic the behavior of
a typical developer navigating the source code using the search
results as a starting point [8], [9]. However, the accuracy of our
estimates must be balanced with ease of use: if an evaluation
metric is too complicated or difficult to use, it will not be
widely adopted by the research community.

Thus, we propose a simple model of developer behavior.
We assume the developer starts at the top of the ranked list
of documents and investigates them in sequential order. At
each rank, the developer has a choice of whether or not to
explore the structural topology of the current document. As
the developer explores the structural topology, she is constantly
faced with the decision to continue forward or go back to the
ranked list. In the following subsections, we formalize this
decision making process and provide our current solution.

A. Proposed Rank Topology Framework

To help describe and compare FLTs, we introduce a two-
part framework that provides a template for evaluating a FLT
by dividing the search into two phases. In the first phase a
developer considers, in rank order, the entries of the ranked list
returned as the result of a search. When considering an entry,
the developer may have some impression of the following k
entries. For example, if when considering e2, the next entry
e3, has a much lower score, then the developer may have the
impression that it is worth considering e2 longer than average,
since the next entry appears irrelevant.

Thus, phase 2, which consists of the investigation of an entry
ei from the ranked list, begins with ei and some impression
of the subsequent entries (e.g., ei+1) in the ranked list. Phase
2 considers ei and the code artifacts connected to it. The
connections are captured as a set of relations (e.g., callees,
callers, textual similarity, within the same file, (data) depends
on, etc.). Each relation can have a weight associated with it.
For example, callers might be valued more than callees. We
make the simplifying assumption that developers do not revisit
a code artifact; thus, they explore a subtree of a spanning tree
of the graph defined by the structural relations.

At each code artifact, one of the following two decisions
is made: bail or next. If the developer opts to bail on the
current structural search, they return immediately to the next
entry in the ranked list. Alternatively, the next code artifact
can be chosen from the set of structurally connected code
artifacts to the structural path being traversed. We assume the
developer only chooses to investigate code artifacts that appear
“interesting” (i.e., that have a high enough value). In either
case the impression (of the value of bailing) is updated. This
value can be increased if nothing useful is being encountered
or it can be decremented if phase 2 is going well.

B. Modeling an Imperfect User

One of the challenges in using a rank topology measure
is in determining how smart the developer is. An omniscient

developer would make no wrong choices and explore every
profitable structural edge no matter how tenuously related
to the bug description. For example, consider JabRef1, an
open source Java bibliography reference manager, and its bug
#1297576 with query “Printing of entry preview”. All 20
of the fix locations are just 4 or 5 structural “hops” (i.e.,
edges) away from the very first result, the actionPerformed
method in the PrintAction class. While the PrintAction

class seems relevant to the bug, and it is understandable that
some of the relevant documents are located nearby in the pro-
gram structure, some of the links are not obvious. For example,
navigating these structural paths requires navigating through
a generic openWindow method that launches a number of
actions within JabRef, and then to the generic get(String)

method in the JabRefPreferences class. The presence of
these generic, highly-connected methods makes it trivial for an
omniscient user to navigate to most bug fix locations within 4-
6 structural hops of the top ranked document. Although most
developers are not omniscient, the perfect omniscient user
provides an upper bound on the limits of structural topology
in finding fix locations.

Developers who are not omniscient will not make generic
structural hops unless there is strong evidence to do so.
Prior work applying information foraging theory to developer
behavior has shown that simple textual information, such as
the cosine similarity between a method and a query, closely
models actual developer behavior when debugging [8]. Thus,
we propose a semi-intelligent user that only follows a struc-
tural link if the next method exhibits textual clues.

C. The Proposed Rank Topology Metric

For each bug fix location, we determine the shortest number
of hops required to find it in terms of structural topology
and the ranked list. The result set is the minimum cost of
navigating to each fix location. For simplicity, in the current
work the cost of each rank jump and each structural edge
is one. If a developer navigates the structural topology from
a method to another method in the same class, we assign
a cost of two (one to navigate to the class and one to get
to the desired method). Textual information can be used to
approximate whether a developer would recognize a structural
link and follow it. If the textual relevance to the query is below
a certain threshold (i.e., if the developer is unlikely to explore
it), the structural edge is ignored.

In this initial work, we make the simplifying assumption
of exploring every ranked document, and not considering all
the wrong explorations before arriving at a fix location. For
example, a fix location may be 5 structural hops away from the
third ranked document, giving a total cost of 8. This distance
does not consider all the elements explored with rank 1 or 2
before arriving at rank 3 when calculating the cost; it only
considers the number of elements to reach the current rank in
the list (3, in this case) and the direct structural cost of the
path to the fix. The inverse of this cost forms our metric.

1http://jabref.sourceforge.net/



Our proposed rank topology metric is inspired by average
precision (AP), which is commonly used to calculate MAP
scores in evaluating IR systems [5]. Like AP, our metric
involves the average of the inverse ranks for each relevant
document. However, unlike the AP score, the ranks used are
based on the costs using structural topology and rank.

D. Current Implementation
To implement the structural topology, we experimented

with using method call and type hierarchy information as
undirected graphs. Call graphs were extracted using Eclipse’s
statically available call hierarchy functionality. Next, we used
JGraphT’s implementation (http://jgrapht.org/) of the Floyd-
Warshall algorithm to find all shortest paths from the bug
fix locations to every other method in the program. We use
a very simple form of textual information, cosine similarity,
to determine textual relevance of each method to the query.
The cosine similarity is computed using the Vector Space
Model (VSM) where term weights are calculated using term
frequency-inverse document frequency (tf-idf). All of these
components to the rank-topology metric are available by third
party libraries, and need not be implemented from scratch.

III. PRELIMINARY EVALUATION

Our premise is that existing IR measures such as preci-
sion, recall, and MAP cannot differentiate between techniques
that rank related versus irrelevant documents above the fix
locations. To evaluate if our proposed rank-topology measure
captures this distinction, we compare a state of the art IR tech-
nique with a randomly ordered list of methods in the program
with the same relevant fix locations at the exact same ranks
as the IR technique. Thus, we control that the only source
of variation is in the ordering of the non-relevant methods
(i.e., the methods not involved in the bug fix). By crafting the
randomly ordered results in this way, we guarantee the results
are indistinguishable by current evaluation measures.

We selected a small set of bugs from the JabRef program
in the SEMERU dataset [3], [10]. To determine if our rank
topology metric depends on how relevant results are initially
ranked, we selected bugs from three different types of ranked
lists: one where relevant documents appeared in the top five,
one where relevant documents appeared from five to ten, and
one where relevant documents first appeared around rank 100.
We selected two queries (i.e., bugs) of each type. None of the
selected bugs ranked a relevant document in the first position.

The retrieval method used to produce these ranked lists was
the Query Likelihood Model (QLM). The model was selected
because it does not use VSM, which underlies our rank-
topology technique of modeling the imperfect user. Instead,
QLM relies on language models to estimate the probability
that a document generates a query. Documents with higher
probabilities of generating the query are ranked higher. Prior
work showed that this model performs well in FLTs [4].

A. Effect of Structural Topology on an Omniscient User
One of the parameters to the rank topology approach is

what structural information to explore to find fixes in close

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

q1588028 q1553552 q1297576 q1641247 q2027944 q1749613

R
an

k 
To

po
lo

gy
 M

et
ric

Bug Id

All Structure
Call Hierarchy

Type Hierarchy
Class Files

None

Figure 1. Effect of program structure on the rank topology metric for each
JabRef bug used in the case study. Caller information has the biggest impact
on finding bug fixes structurally close to the retrieved results.

proximity to the ranked entries. When navigating source code,
developers have access to caller and callee information in the
call hierarchy, can jump to other classes in the type hierarchy,
or can jump through its class to other methods within the
same class file. Before investigating whether our rank topology
metric can distinguish between random and QLM, we first
explore the effect that different structural topology can have
on the results.

Figure 1 shows the rank topology (RT) measure for the
six JabRef bugs in our case study, sorted by increasing RT
scores when using all structural information. The pink line at
the bottom uses no structural information, and represents the
RT scores for the original raw document ranks. Caller and
callee information is combined into the call hierarchy. The
class files structure adds an edge to the topology from every
class to every method, allowing a method to jump to any other
method in the same class using 2 hops. Finally, type hierarchy
information adds to the edges introduced by class files with
additional edges between super and subclasses.

As highlighted by Figure 1, call information is the dominant
connector among ranked documents and bug fix locations.
Adding class and type hierarchy information results in a
very small improvement overall. Although in the remaining
experiments we use all the structure information, the results
would be similar if we used only call information.

B. Modeling the Imperfect User

The purpose of our case study is to determine if a rank-
topology measure can distinguish between QLM and a ran-
domly ordered list of results with exactly the same relevant
documents at the same ranks. Figure 2 shows the rank topology
metric for each bug in the study. The top line in the figure
represents an omniscient user that finds the shortest possible
path through the structural topology, irrespective of textual
clues. The solid red line below this represents the state of
the art IR technique, QLM, with a textual threshold based on



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

q1588028 q1553552 q1297576 q1641247 q2027944 q1749613

R
an

k 
To

po
lo

gy
 M

et
ric

Bug Id

Omniscient
QLM+Cos
Random 1
Random 2
Random 3
Random 4
Random 5

None

Figure 2. For each JabRef bug used in the case study, the proposed rank
topology metric can differentiate between a state of the art IR technique
(QLM+Cos) and 4 randomly ordered rank lists (1–5). QLM and random
would be indistinguishable using existing IR measures, and would appear
as the “None” line, which only includes ranks with no topology.

the VSM cosine similarity. A structural edge is only added
to the topology if the similarity of both methods is greater
than the median of all the scores returned for that query (i.e.,
bug). We selected the median, rather than a raw threshold
such as .5, because the actual range of cosine values is highly
dependent on the nature of the query. We assume that if a
method’s relevance score is over the threshold, the edges to
related classes (in the Files and Type Hierarchy structures)
also exist.

The next 5 dotted lines in gray and blue are randomly
generated lists, which also use the median cosine score to
prune the structural topology. The pink bottom line uses the
raw ranks alone with no structural topology, labelled “None”.
As expected, Figure 2 illustrates that our proposed rank
topology metric differentiates between a randomly generated
list of results and QLM. One of the randomly generated
lists, Random 2 (in blue), significantly outperforms even
an omniscient user exploring QLM’s rankings for one bug.
These results demonstrate that traditional IR measures such
as precision, recall, MRR, and MAP can give a misleading
picture of the effectiveness of a feature location technique,
when a technique can produce a ranked list that allows the
developer to navigate to a fix location quicker. For future
work, we would like to study actual user navigation habits,
to see if our proposed rank topology metric accurately reflects
differences between ranked lists for software maintenance.

IV. RELATED WORK

Existing FLTs can be classified by the underlying informa-
tion they use, such as static, dynamic, textual, or historical
information [3]. FLTs based on static analysis examine struc-
tural information such as control or data flow dependencies,
and may incorporate textual information in comments and
identifiers in the code. One such technique uses information
foraging theory to analyze how developers navigate source

code when fixing bugs [8]. Although our rank topology metric
is inspired by the same theory, our aim is to quantify the effort
required by developers when analyzing the suggestions of a
FLT by defining a new measure of relevance that can better
analyze and compare the performance of FLTs.

Another closely related work by Petrenko and Rajlich [11] is
similar to the evaluation metric proposed in this paper. Specifi-
cally, the authors propose using an IR technique to identify bug
fix locations. If the IR technique fails to identify a fix location,
the developer can decide either to reformulate the query, or to
identify a “focus method” (i.e., a method related to the fix). In
the latter case, the developer navigates program dependencies
starting from the “focus method” to identify fix locations. In
our current work, we use a similar infrastructure but from a
different prospective. Whereas Petrenko and Rajlich [11] use
dependencies to speed up the process of feature location and
avoid query reformulation, we analyze dependencies to better
compare and assess FLTs in a semi-automatic usage scenario.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a rank topology metric to fairly
compare feature location techniques (FLTs). In a small case
study, we demonstrated that our rank topology metric can
differentiate between a state-of-the-art IR technique and a
randomly ordered list of results with the same relevant results
at the exact same ranks. These two techniques would be in-
distinguishable using existing IR measures commonly used to
evaluate FLTs. For future work we will study how closely the
proposed rank topology measure mimics an actual developer in
practice when using FLTs during corrective maintenance. We
also plan to investigate the feasibility of more closely modeling
user navigation behavior from source code search results.

REFERENCES

[1] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in ICSE, 1993.

[2] V. Rajlich and N. Wilde, “The role of concepts in program comprehen-
sion,” in IWPC, 2002.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” J. Soft. Maint. Evo.: Research
& Practice, vol. 25, no. 1, pp. 53–95, 2013.

[4] S. Rao and A. Kak, “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text
models,” in MSR, 2011.

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. New York, NY: Cambridge University Press, 2008.

[6] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using
natural language program analysis to locate and understand action-
oriented concerns,” in AOSD, 2007.

[7] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and L. Pollock,
“An empirical study of the concept assignment problem,” School of
Computer Science, McGill University, Tech. Rep. SOCS-TR-2007.3,
Jun. 2007, http://www.cs.mcgill.ca/∼martin/concerns/.

[8] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. Flem-
ing, “How programmers debug, revisited: An information foraging
theory perspective,” IEEE TSE, vol. 39, no. 2, 2013.

[9] A. von Mayrhauser and A. M. Vans, “Program understanding behavior
during debugging of large scale software,” in ESP Workshop, 1997.

[10] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. H. Kagdi, “A dataset from
change history to support evaluation of software maintenance tasks,” in
MSR, 2013.

[11] M. Petrenko and V. Rajlich, “Concept location using program
dependencies and information retrieval (DepIR),” Inf. Softw. Tech.,
vol. 55, no. 4, 2013.


