
Task-Driven Software Summarization

Dave Binkley1, Dawn Lawrie1, Emily Hill2, Janet Burge3, Ian Harris4,

Regina Hebig5, Oliver Keszocze6, Karl Reed7, John Slankas8

1Loyola University Maryland, Baltimore, MD, USA
2Montclair State University, Montclair, NJ, USA

3Miami University, OH, USA
4University of California, Irvine, CA, USA

5Hasso Plattner Institute at the University of Potsdam, Germany
6University of Bremen, Germany
7 La Trobe University, Australia

8North Carolina State University, NC, USA

binkley@cs.loyola.edu, lawrie@cs.loyola.edu, hillem@mail.montclair.edu, burgeje@miamioh.edu harris@ics.uci.edu,

regina.hebig@hpi.uni-potsdam.de, keszocze@informatik.uni-bremen.de k.reed@latrobe.edu.au, jbslanka@ncsu.edu

Abstract—There is a growing interest in software summariza-
tion and tools for automatically producing summaries. Discus-
sions of relevant papers at recent conferences led to the obser-
vation that software summarization needs to consider migrating
away from “is this a good summary?” and towards “is this a
useful summary?” As a result, it has been suggested that to judge
usefulness, one needs to view the summary through the lens of
a particular task. A preliminary investigation of this suggestion
was undertaken at the 2013 ICSE workshop NaturaLiSE. Initial
results and lessons learned from this investigation support the
notion that task plays a significant role and thus should be
considered by researchers building and accessing automatic
software summarization tools.

Index Terms—Source code summary, summarization evalua-
tion, task-oriented

I. INTRODUCTION

Comprehending source code is hard. A well written sum-

mary can aid a software maintainer in this task. The challenge

here is that “well written” can depend on the current task. For

example, Renee the Reuser benefits from context information,

best practices for the effective use of the code, and the

identification of replicated code. In contrast, Teddy the Tester
benefits more from summaries focused on the functionality.

Current summaries found in source code (i.e., comments) are

often general, out of date, and even incorrect. They may,

therefore, be inadequate for a given task. This is largely due

to the fact that comments are written by engineers intimately

familiar with the code, who can end up writing comments of

use only to someone who already understands the code.

Recently, software engineering researchers have begun

tackling the problem of automatic summarization of source

code [1], [2], [3], [4], [5], [6]. The goal of automatic text

summarization can be stated as “to generate a brief yet

accurate representation (or summary) of a source document.

An ideal summary is significantly shorter than the source

document but retains its important information” [5]. What is

missing from this notion of summarization is the potential

influence of the consumer of the summary. The underlying

question raised in this paper is

Does effective summarization require a specific tar-
get task or can source code be summarized in the
abstract?

While this could be the subject of a formal hypothesis test,

the results reported herein are of a small experiment conducted

recently as an indication of possible outcomes.

One of the major obstacles for source code summarization

is that unlike natural language text, where all school children

practice writing summaries, developers do not have as much

practice summarizing computer programs. Therefore, they do

not have as strong an innate sense for what should be part of

a software summary.

Because of the challenges assessing the quality of auto-

matic summarization’s output, current empirical study tends

to evaluate based on goodness, where a collection of pro-

grammers are asked if the summary satisfies some goodness

measure, for example, if the summary is readable. While this

assessment represents an important first cut, a more realistic

assessment considers a summary’s (down stream) usefulness
on a software maintenance task. Does the summary help an

engineer accomplish a task, perform it better or faster? To

encourage movement beyond good, this paper presents a pilot

study aimed at investigating how a target task impacts the

content of a summary. The following section introduces the

state of the art in text and source code summarization. Then

the next section describes the target tasks and presents a pilot

study for creating summaries for the target tasks. The paper

concludes with lessons learned and a summary.

II. STATE OF THE ART

Beginning with Luhn, the automatic summarization of nat-

ural language text has been of interest for over fifty years [7].

As the field matured, template summaries and extractive sum-

maries were proposed [8]. In template summaries, the system

fills in blanks using text from a document. These types of

summaries are limited by the scope of the templates. Extractive

summaries extract sentences from documents and paste them

together to form a summary. An extractive summary is more

general purpose and can be used to summarize multiple

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.65

432

documents. In addition, it nicely avoids the difficult task of

generating language; however, even the best summarizers (i.e.,
humans) cannot produce good extractive summaries because

they are hampered by the need to use sentences found in

independent articles [9]. Another challenge is that a summary

should include important facts, requiring highly subjective and

content dependent judgments.
Recent summarization tasks have attempted to address these

problems by disqualifying extractive summaries and giving

more direction to both systems and humans when creating the

summaries. One representative example of this is the Guided

Summarization task at the Text Analysis Conference (TAC)

where systems compete to produce the best summaries of

ten newswire documents [10]. The summaries consist of 100

words and must include some predefined aspects based on

the topics of the ten documents. For example, documents

in the health and safety domain must address five aspects

such as “who is affected by the health/safety issue.” Human

accessors then evaluate the automatically-produced summaries

for readability, content, and overall responsiveness.
Automatic summaries are commonly evaluated relative to

human produced summaries using the ROUGE (Recall Ori-

ented Understudy for Gisting Evaluations) score, which eval-

uates an automated summary relative to a set of human sum-

maries [11]. In particular the human summaries are reduced

to n-grams, which are runs of n words from a document. For

example, ROUGE-2 is based on the set of all the bi-grams

in all the human summaries. The score for a summary is the

number of n-grams from the human summaries found in the

automated summary divided by the total number of unique

n-grams in the human summaries.
Moving from automatic summarization of general texts to

the summarization of software, the state of the art is surveyed

by considering six recent projects. Early work on software

summarization includes Murphy’s dissertation on summarizing

structural information in source code [1]. She studied how

semi-automatic (iterative) summaries can enable an engineer to

assess, plan, and execute changes to a software system. While

this study was done in the context of software evolution, it did

not consider producing software evolution specific (i.e., task

specific) summaries.
More recently Moreno and Aponte compared tool-generated

summaries with those created by Java developers [12]. They

discovered that developers create summaries of similar length

for all types of entities (e.g., methods and classes) while

the length of automatically generated term-based summaries

correlated with the length of the artifact summarized. They

conclude that to get the gist of source code artifacts auto-

matically, the length of a term-based summary should range

from ten to twenty words nearer ten for methods and twenty

for packages. One approach to encourage a target length is

the use of template-based summaries such as those described

in Sridhara’s dissertation [2], where templates are used in

the automatic generation of comments to summarize Java

methods, collections of statements, and formal parameters.
A similar approach was recently presented by Moreno et

al. who aim to generate human readable summaries for Java

classes using class and method stereotypes [3]. While the

summaries focus on content and responsibilities of a class

rather than its relationships with other classes, they fall short

of being task specific. When asked, programmers judged

the generated summaries readable and understandable. This

evaluation leaves open the usefulness of the summaries for

a particular task, which was pointed out in the discussion

following the presentation of this work at the conference.

Finally, at ICPC 2013 Gail Murphy’s group presented two

summarization approaches that hint at the need for task spe-

cific summarization. In the first, Rastkar and Murphy propose

the use of multi-document summarization techniques to gen-

erate a natural language description of why code changed [6].

Their approach is extractive as it extracts full sentences to form

a summary from the documents related to the change. Initial

results show that overall developers found the summaries to

contain information related to the reason behind the code

change. However, they also note the evaluation needs to go

further and investigate whether developers find the generated

summaries useful. Doing so is likely to motivate the incorpo-

ration of task specific summarization techniques.

In the second approach, Kamimura and Murphy observe that

automatic test generators (e.g., CodePro) produce code that

can be difficult to comprehend [13]. They propose a technique

for generating human-oriented summaries of test cases aimed

at improving a humans’ ability to quickly comprehend unit

tests. They conclude by noting that “much more work is

needed to make truly usable human oriented summaries.” Here

again this future work is likely to consider task summarization

specifically useful to the task.

III. PILOT STUDY

From the previous section, it is evident that recent work

on automatic summarization hints at taking task into account.

As a precursor to the construction of such tools, the case

study presented in this section considers task specific manually
produced summaries. These are useful in assessing the role

task plays. On the one hand, if task does not play a role in

manually produced summaries then it is unlikely to play a role

in automatic summaries. However, if it does play a role then

there is a need for manually produced task-specific summaries

against which to measure automatic tools.

For the case study, the participants of the 2013 NaturaLiSE

workshop formed pairs to produce summaries of two classes

selected from the program jEdit 4.2 by the first two authors.

Over the course of an hour and a half, each pair examined

one or both of the classes and produced two summaries for

each class, one aimed at a reuser and the other at a tester. This

section first describes the two tasks in greater detail, then the

two selected classes, and finally the analysis of the summaries

produced.

A. Tasks

To investigate the impact that task has on summarization,

two tasks were considered. The tasks were personified by

433

Table I
A COMPARISON OF DisplayManager SUMMARIES TO StatusBar

SUMMARIES. (BOLD ENTRIES SHOW TASK DOMINANCE.)

StatusBar-Renee StatusBar-Teddy

DisplayM-Renee-1 0.148 0.068
DisplayM-Teddy-1 0.076 0.072
DisplayM-Renee-2 0.124 0.090
DisplayM-Teddy-2 0.072 0.084
DisplayM-Renee-3 0.060 0.055
DisplayM-Teddy-3 0.065 0.132

p u b l i c vo id a p p e n d P o s i t i o n (S t r i n g tag ,
i n t s t a r t , i n t end) {

L i n k e d L i s t <TMarkedStoreI tem> l l =
tagMap . g e t (t a g) ;

i f (l l == n u l l) {
l l = new L i n k e d L i s t <TMarkedStoreI tem > () ;
tagMap . p u t (t ag , l l) ;

}

TMarkedStore I tem i t em =
new TMarkedStore I tem () ;

l l . add (i t em) ;
i t em . end = end ;
i t em . s t a r t = s t a r t ;

}
Figure 1. The method appendPosition for the program JabRef

Renee the Reuser and Teddy the Tester. To illustrate how

summaries might differ given the specific tasks, Figure 1

shows a method found in JabRef 2.6. A summary directed

towards Renee the Reuser might read:

Dear Renee,

Please be aware that this method creates lists of

position pairs based on the <tag>.

In contrast, a summary directed towards Teddy the Tester

might read:

Dear Teddy,

Please consider calling the same <tag> twice,

once to test found and once to test not found.

While this example is simplistic, it is nevertheless evident that

task driven summaries should emphasize different aspects of

the code.

B. Code to Summarize

The classes for which the summaries were produced came

from jEdit 4.2, a text editor for source code. This program was

selected because it was presumed that workshop participants

would be familiar with the domain vocabulary.

The two classes selected were DisplayManager and Status-
Bar. From each class multiple methods were also selected.

The instructions asked participants to provide a summary for

the chosen methods and then the class as a whole. For the

DisplayManager class, the methods expandFold and narrow
were chosen. Quantitatively DisplayManager includes 868 LoC

and the two methods 111 LoC and 30 LoC respectively. For

StatusBar, the methods propertiesChanged, statusUpdate, and

updateBufferStatus were selected. Here StatusBar includes 482

LoC and the methods 69 LoC, 134 LoC, 9 LoC, respectively.

To give the reader a sense of the task of summarizing

DisplayManager, understanding what a fold is within the

editor along with the data structures that keep track of the

folds are important background for writing a summary. The

implementation uses parallel arrays of integers rather than, for

example, creating a single array of fold descriptors. Consider-

ing StatusBar, the class visually displays information, which

means that seeing the interface is likely to aid a person writing

a summary.

C. Analysis

Pairs of participants examined the source code and then

wrote two summaries (one for each task). One pair failed to

identify the two separate summaries for the two tasks. Of the

remaining three, only one pair considered both classes due to

limited time. Thus, in the end, eight summaries were produced:

two for StatusBar and six for DisplayManager.
To analyze the summaries, statistics were collected and sum-

maries were compared pairwise using cosine similarity [14],

which was computed by creating a vector space model in

which each summary is treated as a bag of words comprised of

word weights. The standard term frequency-inverse document

frequency (tf-idf) was used to weight the words in each docu-

ment’s vector from which the cosine similarity was computed.

The eight summaries contained from between 18 and 103

non-stops words. The mean number of non-stop words was

42.5. A standard English language stop list was used for iden-

tifying the stop words, as summaries did not contain source

code. The summaries were also stemmed using kstem [15] be-

fore computing cosine similarity, which is a standard practice

in natural language to conflate words with different suffixes.

When examining the unique stemmed vocabulary, summaries

contained between 11 and 43 unique words with an average

of 25.1 words. The total number of unique words used in all

the summaries was 120, so a word occurred on average three

times across the summaries.

Several observations concerning the summaries can be made

by examining the similarity between pairs of summaries. The

first observation is that there is evidence that there are words

that are specific to testing and others that are specific to

reuse. This can be seen in Table I, where the two StatusBar
summaries are compared to the DisplayManager summaries. In

the table, the summaries are labeled by task, followed by class

name, and finally, for DisplayManager a number indicating the

pair that produced the summary. The table reports the cosine

similarity. In 83% of the cases (5 of 6), the summary for the

particular task is more similar to the summary of the same task

than the other task. These cases are shown in bold in the table.

These patterns manifest in the summaries in the vocabulary

used. For example, testing summaries included phrases such as

“tester,” “true and false,” “range,” and “completely test” while

reuse summaries include “overall” and “the parameters.”

The second observation comes from comparing the data in

Table I with that shown in Table II, which shows the pairwise

similarities between all pairs of DisplayManager summaries.

First notice that the diagonal has all ones in it. This is expected

434

Table II
COSINE SIMILARITY COMPARISON OF DisplayManager SUMMARIES TO DisplayManager SUMMARIES

DisplayM-Renee-1 DisplayM-Teddy-1 DisplayM-Renee-2 DisplayM-Teddy-2 DisplayM-Renee-3 DisplayM-Teddy-3

DisplayM-Renee-1 1.000 0.434 0.205 0.311 0.212 0.127
DisplayM-Teddy-1 0.434 1.000 0.322 0.293 0.202 0.150
DisplayM-Renee-2 0.205 0.322 1.000 0.363 0.179 0.140
DisplayM-Teddy-2 0.311 0.293 0.363 1.000 0.179 0.215
DisplayM-Renee-3 0.212 0.202 0.179 0.179 1.000 0.579
DisplayM-Teddy-3 0.127 0.150 0.140 0.215 0.579 1.000

when one compares something to itself because the vectors are

identical. When considering the two tables together, the values

in Table II are nearly all larger than the largest value in Table I,

showing a dominance of terms from the domain of the code

as opposed to the domain of the task (testing versus reuse).

This is further supported by the fact that summaries for Renee

are not necessarily more similar to each other than they are

with summaries for Teddy in Table II, where all summaries

are of the same source code.

Finally, Table II shows the expected result that the authors of

the summary are more similar to themselves, moving between

tasks than they are to summaries written for a particular task.

This is born out in the similarity scores that appear in bold,

which are the second largest in each row and likely indicate

the importance of personal word choices. Examples causing

authors to be more similar to themselves include the use of

the term “method” versus “function”.

IV. LESSONS LEARNED

After producing the two summaries, an open discussion

was held by all participants to gather impressions and lessons

learned. The dominant take home message was that summariz-

ing non-trivial unfamiliar code is extremely challenging. This

manifests itself in requests for the kind of information tradi-

tionally held in a data dictionary (e.g., acronym expansions, a

data structure summaries, and an explanation of vague variable

names).

Several participants suggested that dynamic information

would have been helpful. For example, movies showing the

Status Bar GUI in action or an example of a fold operation.

This hints at potential future work on incorporating dynamic

information into source code summarization.

Finally, a handful of the comments were meta comments

regarding the summarization process itself. These included

crowd sourcing the process to involve more geographically-

separated researchers in developing a shared corpus and an

appreciation for the two codes used not being trivial or just

academic exercises. One pair writing the reuse summary first

found the test summary easier to produce (and the resulting

summary shorter). This is likely evidence of a learning effect.

Finally, unlike the summarization of more standard natural

language texts such as news articles, it was not clear to

participants what level of detail was needed for the summa-

rization. For example, one participant asked “does Renee need

to understand how the code works to re-use it or is it sufficient

just to know what it does?” Such a question further motivates

the study of task-driven software summarization.

V. CONCLUSION

Task driven summarization is an important direction for

software summarization as it provides focus for the summaries,

which is evident in the fact that a person produces different

summaries for different tasks. However, the task must be well

defined. The development of aspects for the task, as in the TAC

Guided Summarization Task, is most likely needed to produce

greater consistency among human generated summaries. These

could then be used as gold sets against which system perfor-

mance could be judged using, for example, the ROUGE score.

ACKNOWLEDGMENT

Thanks to all workshop participants and in particular

Alexandre Bassel and Michael Pradel for their help with the

summaries. Support for this work was provided in part by NSF

grant CCF 0916081.

REFERENCES

[1] G. Murphy, “Lightweight structural summarization as an aid to software
evolution,” PhD thesis, University of Washington, Washington, DC,
USA, 1996.

[2] G. Sridhara, “Automatic generation of descriptive summary comments
for methods in object-oriented programs,” PhD thesis, University of
Delaware, 2012.

[3] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in International Conference on Program Comprehension, 2013.

[4] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in Proceedings of the Working Conference on Reverse Engineering,
2010.

[5] B. Eddy, J. Robinson, N. Kraft, and J. Carver, “Evaluating source code
summarization techniques: Replication and expansion,” in International
Conference on Program Comprehension, 2013.

[6] S. Rastkar and G. Murphy, “Why did this code change?” in International
Conference on Program Comprehension, 2013.

[7] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159–165, 1958.

[8] I. Mani, Automatic summarization. John Benjamins Publishing Com-
pany, 2001, vol. 3.

[9] P.-E. Genest, G. Lapalme, and M. Yousfi-Monod, “Hextac: the creation
of a manual extractive run,” in Proceedings of the Second Text Analysis
Conference, Gaithersburg, Maryland, USA. National Institute of Stan-
dards and Technology, 2009.

[10] K. Owczarzak and H. Dang, “Overview of the tac 2010 summarization
track,” in Proceedings of TAC 2010, 2010.

[11] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out: Proceedings of the ACL-04
Workshop, 2004, pp. 74–81.

[12] L. Moreno and J. Aponte, “On the analysis of human and automatic
summaries of source code,” CLEI ELECTRONIC JOURNAL, vol. 15,
no. 2, 2012.

[13] M. Kamimura and G. Murphy, “Towards generating human-oriented
summaries of unit test cases,” in International Conference on Program
Comprehension, 2013.

[14] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge Press, 2008.

[15] R. Krovetz, “Viewing morphology as an inference process,” in Proceed-
ings of the 16th ACM SIGIR Conference, R. K. et al., Ed., June 1993.

435

