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IL—A GENERAL NOTATION FOR THE LOGIC
OF RELATIONS '

By C. D.” BROAD.

§ 1. THE object of the present paper is to offer a consistent
system of notation which shall be extensible to relations of
any -degrée of polya,dlclty The notation for the logic of re-
lations developed in' Principia Mathematica, so far as that
work ‘has gone, is highly convenient for dyadic, relations,
‘which alone have as yet been treated. But it is not rea.dlly
extenmble to triadic and higher relations.

" Doubtless these will be dealt with by Dr. Whitehead in the
fourth volume, which is to treat of geometry. But the neces-
sity for a satisfactory notation for relational propositions in
general is urgent. Work of the utmost importance, such as
‘Mr. Robb’s Theory of Time and Space, cries aloud for trans-
lation into symbolic logic ; and I doubt if any great progress
in this most promising direction can’ be made until logic has
developed a satisfactory notation forrelations of high degrees
of polyadicity and for their associated logical functions. For
this reason I ‘venture to put forward the following sketch in
the hope that it may ‘be at least temporarily useful till Dr.
‘Whitehead publishes the fourth volume of Principia.

I am not acquainted with any other attempts in this direc-
tion except the notation created ad hoc by Whitehead in his
Mathematical Concepts of the Material World (Proc. Roy.
Soc., 1906). This notation, though convenient for its purpose,-
does not claim to be closely comnected with the notation
already worked out for dyadic relations.

-No special logical or philosophical theory underlies the
notation which I offer in the presentarticle, though I believe
that the notion of a relational complex as distinct from a re-
lational proposition has an important bearing on the theory
of judgment.

é 2. Complexes and Propositions.—I begin by distinguish-
ing between relational complexes and relational propositions.
Let R be any relation, and, for simplicity, let it be dyadic.
Then I denote by the formula R(z, y) what I call a relational
. complex. Suppose that R = the relation of loving, that
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‘@ = Smith, and y = Jones; then R (Smith, Jones) stands for
what is denoted by the phra,se Smith’s love for Jones. Simi-
larly R (Jones, Smith) stands for what i Is denoted by Jones’s
love for Smith.

These are clearly not propositions. We seem to be able to
consider such complexes and to make assertions about them
‘even if we know that Smith does not love Jones, or are
doubtful on the point. Take, e.g., the conditional proposi-
‘tion : it would be a good thing if Smith loved Jones. It
‘might be held that this ascribes a predicate to a relational
complex without asserting the relational proposition corre-
sponding to the complex.

I propose to symbolise the corresponding rela,tlonal PTroposi-
tzon by the formula

R (Smith, Jones)!

The difference between the assertorical proposition : ‘it.is a
good thing that Smith loves Jones, and the conditional pro-
position : it would be a good thing if Smith loved Jones would
then seem to be that the first is :

- R (Smith, Jones) and R (Smlth Jones) is good
whilst the second is merely

o R (Smith, J ones) is good.

Agaln, it might seem a possible view that ethical predicates
always apply to relational complexes without regard to the
truth or falsity of the corresponding relational propositions,
and that this is a peculiarity of such predicates. But this,
like the question whether relational complexes be in any sense
real when the correspondmg relational propositions are false,
is a philosophical question which need not trouble us for the
present purpose. All that we need say for the present is
(a) that there is a recogmsa,ble difference between R(z, ) and
R(.z: y) !; (b) that the question whether !is wholly logical
(i.e., belongs wholly to objects of thought), or wholly psy-
chologlcal (¢.e., belongs Wholly to mental acts), or is some-
thing connected with the relation between acts and objects,
needs careful consideration ; and (¢) that its connexion with
Russell’s and Frege’s assertlon-symbol needs further investi-
gation. It cannot, I think, be identical with the assertion-
symbol ; for this: apphes to propos1t10ns, whilst |"turns a
complex into a proposition. )

§3. Comaolewes and. Functions.—I next w1sh to point out
that Rz, g) is strictly a function of z and y in the sense in
which function is used in mathematics, whilst what Russell
calls a propos1tlonal furiction is not in this sense a function
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at all. E.g., 2 means the same as the square of x, and x x
means the same as the product of z by y, just as Rz, y
~ might stand for what is denoted by the love of z for y.

But a propositional function for Russell seems to mean a.

proposition whose terms are variables instead of constants.
It seems better to avoid the word function altogether in this.
connexion, smce, in the strict sense of the phrase, Smith’s.
love of Jones is as much a function of Smith and Jones as
«’s love of y is a function of z and y. There are really three-
distinctions to be considered and symbolised both among
complexes and a.mong propositions : (i) the definite complex
© or proposition (Smith’s love of Jones—Smith loves Jones) ;:
(i) a variable instance of the same form (z’s love of y—az
loves ¥); (iii) the form itself. This, I take it, is what Russell
symbohses by qbw By prop031t10nal function Russell appears.
to mean sometimes a form and sometimes a variable lnstance
of a form." :
. I shall symbolise the form of a relational complex anOIVIDD‘
R by R(-, -, —,) when there are as many blanks as the-
relation has degrees of polyadicity. A variable instance of
the form can be symbolised by Rz, y, 2). A definite in-
dividual instance can be symbolised by R (Smith, Jones,
Brown). Corresponding to these complex-symbols there will
be the proposltlonal-symbols

R(-, -, =)!
‘Rz, y, !
R (Smith, Brown, Jones) !

The term propositional function thus vanishes, its work
being done partly by forms and partly by variable instances of’
these forms.

. §4. Dyadic Relational Complexes and Double Descriptive
Functions.—There is an adumbration of the notion of rela-
tional complexes in Pmnczpw,, vol. i., *38, where ‘double
descriptive functions’ are dealt Wlth In a sense all the
notation here to be proposed is based on this notion, But it
is evident that Russell and Whitehead think that only a few
relations give rise to such functions. Moreover, the notation
there developed only applies to double descrlptlve functions.

Now in geometry and in many other regions we need to deal
with multiple descriptive functions.

My object now is to generalise this notion and apply it (i)
to all dyadic relations including the relation ¢ of a member t6
its class, and (ii) to extend it to relations of all degrees of
polyadicity. We w111 begin with dya.dlc relations.
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I. RELATIONAL COMPLEXES AND THEIR ASSOCIATED
Foxcrions.

§ 5. Notation for Dyadic Complexes—Let a be a class, and
z a variable individual. Then

ez, a) denotes z’s mé;nbership of a.
4 e(z, a) ! denotes zea.

It is of course clear from & priori considerations that « must
be of a type above that of z, and again that e(a, #) is nonsense.

Let us now leave e for the moment and consider any dyadic
relation R whose terms, we will suppose, are individuals.
E.g. let R = the relation of loving.

Then R(z, ) is the love of z for y.!

Now what would R(z, — ) be? Letus define this as the re-
lation of R(z, ) to y. (Cf. z§y in Principia, when §y is
the relation of z§y toz.) '

*Similarly R(-, ) is the relation of R (z, y) to .

Now consider Russell’s 2§“B3. This is the class

 dl(@y). yeB . u = a§y].

I propose to denote this class by the symbol R(z, “B).

Similarly R(*“‘a, y) will be Russell’s §7‘‘a. . ' :

E.g. R(z, “8) might be the class of z’s love affairs with
Frenchmen. :

R(“a, y) might be the class of the love affairs of English-
men for y.

Now R(“a, ) is symbolised by Russell not only as §y*“a but

also as a J y, and this is done in order that it may in its turn

be treated as a double descriptive function. Our notation
allows us to do likewise. We see at once that we can derive
two new relations from our classes, e.g., R(“a, - ) from
R(“a, ) and R(-, “B) from Rz, “B). The former might
mean the relation of (the love affairs of Englishmen for ) to
y, and the latter the relation of (the love affairs, of z with
Frenchmen) to z. R (“a, —) is what Russell- symbolises by

a ,§,‘.. His/symbol ‘for my R( -, “B) would presumably be § B.
§ 6. Derivative Classes of Classes.—From the relation

1 Strictly there seems to be a difference between «’s love for y, the fact
that « loves 9, and «’s love-affair with y. It would be necessary in any
complete treatment to analyse these carefully, and, if they proved to be
genuinely different, to establish a different symbol for each. In the
present tentative sketch I have .treated them as equivalent, and im
particular examples have translated R (x, y) into the form of wordsithat:
seemed most convenient in éach case. '

v
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R(-, “B) we can get a new class, this time a class of classes.
This will be symbolised by R(““a, “B). What will this mean ?

‘We have yeR(“a, “B) .=:(qz).zea v = R(z, “B).

B D (H®) . zea .y = Y (AY) - yeﬁ %
/ = R@ 9l

Hence R(“a, “B) = §[(Hz) . zea .y = (HY) - yeB. u

Now why do we write this in the form R(“a, “B) and not
simply in the form R(‘‘a, “B)? - The reason is this. The
relations R(“a, — ) and R(-, “B) are different, and they give
rise to different classes of classes. If we do not show which
relation we started with we shall end up with R(*“a, “8) in
both cases, .., we shall have one symbol R(‘‘a, “B) to re-
present the two different classes - :

 SlEy) yeB .y = (@) - vea . w'= R, )]
and  [(@2) . vea.y = A[(FY) . yeB . v = Rz, ]l

‘We must therefore have some means of distinguishing in the
final symbol between the relation with which we started.
Accordingly I propose to write :

- R(“a, “P) for the class corresponding to R(-, “B)
and R(“a, “B) for the class corresponding to R(*“a, -).

The class R(““a, ¢‘B) is Russell’s cla.sé a§“;3. '

A

 Now since R(“a, “B) and R(‘“‘a, ‘‘B) are classes of classes
they will have logical sums. And it is easy to prove the
important proposition that . ' . ‘
sR(“a, “B)=sR(“a, ‘‘B) =4[ (A=, y) . zea .yeB . u=R(=, ]!
We can’ easily illustrate all these' notions by means of a
diagram. Suppose, e.g., that there are 6 Englishmen and
3. Frenchmen. Let us represent Englishmen by dots and
Frenchmen by circles. Let us represent the love of the

Englishman m for the Frenchman » by ."_"__>__-11'o . Then

we might have the following state of affairs :—

! Since these logical sums are im yortant and do not depend on the
difference between R(‘‘a, “8) and R(g‘a, “g) it will be useful to have a

symbol for them. I suggest that R(‘a, 8) be used ; it can hardly lead
to error, ’ . .
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/! ! Then 2 3 represents the

(i) > loveof E,for F,.

5 (i) - represents  the.

g class of loves of

Englishmen for

F,, t.e., the class
R(“a, F).

. S
A
o O p» w N

&—>—0
¢ 3 |-
& :
~ We see in fact that R(“a, “8) and R(“a, “B) are two
different classifications of ‘the Toves of thése Englishmen for.
these Frenchmen. The first classifies together all loves in
which the same Englishman is the lover and the second
classifies together all loves in which the same Frenchman is
the beloved. _
(v) It is clear from these diagrams that

S‘R(“a’: ‘fﬁ) = S{Rv(::a, “B)’

and that it is the class of all the eight friendships in which:
an Englishman loves a Frenchman.

§ 7. Application to e—As these results hold generally of
dyadic relations we can apply them at once to e.

For example we shall have e(‘y, @) as the class of member-
ships in a of membérs of y. - Again e(z, ‘‘x")—where £ is
written to denote the fact that x must be a class of classes—
stands for the class of memberships.of « in. classes which are
themselves members of x. Liastly we shall have:

s'e(““y, “kP) = s'e(‘“y, “k?) = U[HZ, a) . wey . aex. U = e(z, a)).
This is thus the class of memberships of members of ¢ in

o
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classes that are members of «. I do not suggest that in the
.case of e these functions are of much practical importance.
If we want an example from geometry we can take the relation
. between two segments 4 and % which make an angle with
each other. Then £ (A, k)! expresses the fact that 4 'makes
-an angle with % and 4(h, k) represents the angle which 2
~makes with %.

L(h, “B) is the class of angles made by 2 with segments of
the class B; L(“a, k) is the class of angles made by seg-
ments of the class a with k; s'4(“a, “B) or L(“a, “B) is
“the class of angles formed by a member of a with a member
of B. ,
§88. Eztension to Triadic Relations.—Conformably to
what has been said above a triadic relational complex will
have the form R( -, -, -). ILet R be the relation of
jealousy. Then R(z, y, #) is the jealousy of z for y on ac-
count of'z; R(—,y, #) is the relation of this jealousy to z,
R(z, -, 2) is the relation of it to y, and R(z, y, - ) is the
-relation of it to z.

The next point to notice is that a formula such as

R(-, -, # must be rejected as ambiguous on similar
grounds to those which made us reject R(“a, “B). For:
R(-, -, 2) would equally stanid for the relation of R(z, —, 2)

_to 2 and for the relation of R(-, y, 7) to ¥ ; and these are
“.clearly not identical with each other. If we want to express
" these relations we must do so by the respective formule
R(-, =, #),and R(=, -, 2). Clearly there will be six such
relations, viz., , ‘
R(=, -,2)and R(-, =, 2)
R(=,y, -)and R(-, 9, =)
R(@, =, -)and Rz, -, =).

We could evidently go a step further and consider the
relations of each of these to the remaining term in it. Thei
symbols would be ‘

R(E) =) ~)&ndB(=,
RE=, -, =) and R(=,
R(=,=, =)and R(-,

I shall not attempt to translate these symbols into words.
. A simplification which suggests itself and which would
" clearly be useful in dealing with relations of higher degrees
of polyadicity is shown below when the above six formule
are written respectively as:— . -

=)
, S

y —)-

o
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R(2, _, 2)and R (2, 2 = )

R(_, 1, 2)and R(2, 2 = 3)

R(L,2,2)and R (1, 2, 2).

(Naturally Wlth a dyadic relation we should get

R(L, 2)and R(2, 1) simply.)
- §9. Classes derwed from Triadic Complezes.—From the
-relatiohs R(-, ¥, 2), R(z, -, 2), and R(%, y, —) we at once
derive the classes R(“a, ¥, z), Rz, “B, 2) and R(z, y, “y).
These may be illustrated respectively by (i) The jealousies of
" Englishmen for y on account of 2, (ii) The jealousies of  for
Frenchmen on account of z, and (111) The ]ea,lousues of z for

y on account of Germans.
" These classes give rise respectively to the rela.tlons

R(“a, —,%) and R(“a, y,. )
R(-, “B, z) and R(z, “B, -)"-
R(-, 9, “y and R(z, —, “y).

From these we can obtain in the usual way sm classes of
classes of rela.tlonal complexes, viz.,

R(“a, “B, ) and R(“a, y, “y)
R(““a, “B, z) and R(z, “8, Y)
(“a, ¥, “‘y) and R(z, “B, “v).

It will be sufficient to illustrate the meanings of the first
and third of these.

We have 8¢R(“a, “B, 2). =. (€Y) . yeB. & = R(“a, y, 2).
- (HY) . yeB. 8 = d[(Hx) . zea. u
= Rz, ¥, 2)].
('.z[w) wéa .8 = W(Hy). yeB.u

= R(, y, 2)].

The first means that you first consider all the jealousies in
‘which any Englishman is jealous of ¥ on account of #, where
y is a Frenchman, and then make up a class each of ‘whose
members is the class -of these jealousies directed at a single -
Frenchman. The second means that you first consider all
the jealousies in which @ is jealous of any Frenchman on
account of z, where Z is an Englishman.- You then make up
a class each of whose members is the class of these jealousies
felt by a single Englishman.

It 1s evident that s'R(“‘a, “B, 2) = sR(“a, “,3, 2) .

= d[(Hde, y). vea.yeB . u = Rz, y, 2)]. It is s thus the class
of jealousies of Englishmen for Frenchmen on account of z.

I

Again 3€R(“¢i, “B, 7).
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§10. Our six new classes give rise to six new relations,
viz., - .

,R(“a, “_é! _) and R(“a, - “‘Z) .
R(((g’ “B’ _)&nd R(_’(‘B’ “1)
R'(« 2, —, “‘Y) a,nd. R (__A’ a& “')’)

These in turn will give rise to six classes of classes of classes,
viz.,

, R(“a, “/-3__, ul) a.nd R(-“a, ué:’ “‘Z) .
| R(ua—’ uﬁ’ “’L?v and R(“t_‘____’: uB/’ “:Z)
R(‘,‘E’ “é.’ “')') &nd R(“iz u@} “'Y)'

Let us take the first and last of these as examples. It is
easy to show that

R(‘a, “B, “y) = #ll[(@2) . zey .« = S{[(@y) - yeB .3
: = 4[(FZ) . zea.w = Rz, y, 2)]]}
and that R
R(‘:_::, “B, “y) = #[[[(A=). zea. x = S[[(AY) . yeB. &
' - =d4[(@?) . 2ey . u = R, y, 2)]]].

The Mnterpretation of these classes in words would be in-
- tolerably tedious and.would add nothing to the intelligibility
of the notions. But the logical sum of the logical sum of
these classes is important.!
It is in fact easy to prove that ‘
S‘S‘R(“q’ (‘é’ “@ = S‘S‘R(“a, “B_, “'L)

=

] - S‘S‘Bf<“g’ ttp’ ui) _ .‘. .
= d[(Hz, y, 2) . zea . ye . Zey. u.\= R(z, y, 2)].

- Interpreting this class in words we see that it is the class
of jealousies. felt by Englishmen for Frenchmen on account
of Germans. : B

§ 11. Further Extension of Dyadic Complexes.—We may
say that so far we have dealt with classes of complexes ob-
tained from a single relation R by varying the terms within
the limits of certain clagses a, 8, . ., . But we might keep the
terms constant and vary the relation within a certain class p
of relations, which must, for our purpose, be assumed only
to contain relations of the same polyadicity.

1 This may conveniently and without risk of error be fepresented by
the otherwise meaningless formula R(*‘a, “‘8," *“y).
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E.g. let p be a class of dyadic relations. Consider the class
8 = 4[(AR). Rep . v = R(z, »)].
Let us define a new relation - (z, ) as follows : —
~ (&,y) = 4B[u = R(s, iDL
: Then, in Russell’s notation, & = [ - @yl
= in our notation, “p(z, ).
‘We can now proceed to genera,hse this further by varying

z and
Clea,rly “p( =+ ) is the rélation of “p(x y) to z,

Hence
“p(“a, y) = J[[(H2) . vea . v = 4[(TR). Rep.u = Rz, y)]].
Whence s[“p (“a, )] = U (g, R) . zea . Rep ., u=R(z, y)] 5
whilst s[“p(z, “B)] = #[(qy, R) . yeB. Rep. w = Rz, 9)].”
We must now .notice another relation and a.nother class
which must not be confused with the foregoing ones. Taking
the class R(“a, ) we can form the relation - (“a, y), which

is that of R(“a, y) to R.
From this relation we can get the cla,ss of classes p(“a, y).

Now it is easy to see that

“p(“a, y) = J[[(ER) . Rep.«y = A[(2) . zea . w = R(z, )]}

Similarly

“p@, “8) = Fll@R) . Rep . y = [(my) . yeR . w = R(w, 1l

Tt is evident that s« p(“a, )] = s[“p(“a, y)]
and that s [“p(a: “B)] = s‘[“p(x, “/3)]

§ 12. We can now consider some new classes of classes of
classes.

@ R(“a, “B) produces the relation - (“a, “,8)
between it and R, and the elass p(“a, “,3)

(i) R(“a, “B produces the relation - (“a, “B)
‘between it and R, and the class “p(“a, “B).
(iii) “p(*'a, y) produces the relation “p(“a, -)
between it and y, and the class “o(“a, “B).
(iv) “p(“a, y) produces the relation ““p(“a, -) =
' between it and y, and the class “p(“ “B).
(v) “p(x, “B) produces the relation “p(~, “B) =
, between it and z, and the class “p(“a, “8 .
(vi) “p(e, ““B) produces the relation “p(—, “B)
between it and z, and the cla,ss “p(“ “,3)
20
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i There aré six of these classes in all as with ordmary triadic
complexes like R(z, y, 2). . Of these we will consider (i), (iii),
and (v1), whigh illustrate p in different states. . ,

O “p(“a, “B) = A[(@R) . Rep . & = F[[([2) . zea .y
[( ) y€,3 '"'"‘B'(wuy)]]]
(iii) “p(“a, “B) = #[[(ay) - yeﬁ’ K= fy[[(t»I Rep .y
' A (g2) . zea . u = Rz, y)]]].
(Vl) “p(““a, “B) = A[(=) . zea .k = J[@Y) - yeB.v
= 4[(R) : Rep.. u = R(w, oIl

It is evident that s's‘ [any of these classes] is the same.
It . may be represented according to our -usual convention by
[ (“ “B) We then ha,ve

“p(“a, “B) = d[Hz, ¥y, R) . zea . yeB . Rep u = R, y)].

Suppose, e.g., that p was the class of rectilinear relations
and that, when Rep, R(x, y) represents the segment on the
line R which is terminated by the points z and y.

Let a and 8 be two planes. Then “p(““a,“‘8) is the class
of segments of each of which one end is on the plane a and
the other end is on the plane 8.

Evidently this extension could be applied to triadic and
higher relational complexes. But there is no need for us to
trouble about this, for enough has been given to show that
we have a general notation capable of being applied con-
sistently to:relational complexes of any degree of polyadlclty'

II. RELATIONAL PROPOSITIONS AND THEIR ASSOCIATED
FUNGTIONS

§13 Deﬁmt'bon of the Present Problem.—We are now
going to consider the extensmn of such notions as Russell

denotes by R, R“B, R‘y, D‘R, and R. We shall try to
establish “a system of notation ‘which will (a) apply con-
sistently to relations of all degrees of polyadlclty, and (b)
show as'much connexion as possible with that already de-
veloped above for complexes and their associated functions.
We must remember that our previous notatioh has applied
mamly, not to R or 4o terms in R’s field, but to relational
complexes, such as R(z, y, 2), and to classes of these. It is
perfectly true that, vn connexion with such complexzes, we
have considered special cases of the general notion R“S.
E.g., we have considered the class R(z, ‘B, 2). But the rela-
tions with which we then dealt were always of one special
kind, viz. the relations of complexes to some of their own
terms, e.g., the relation R(z, -, 2). Now, although all re-
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lations give rise to complexes and hence to relations between
these complexes and their terms, it is of course not true that
all relations relate complexes to their terms. Most relations
relate terms within a complex to each other. Hence a nota-
tion which is convenient for relations of the special kind
which we have been considering so far will not necessarily
be convenient or even possible for relations in general. .

We may begin by noticing the following important con-
" nexion between relational complexes and relational proposi-
tions :—

Rz, 4, 2)! .=.ElR(z, 9, 2) . =. (qu) . u=4R('w, Y9,

e.g., z is jealous of ¥ on account of z . =. the jealousy of z for
4 on account of z exists . = . there is somethlng Which is
1dentical with z’s jealousy for 9 on account of z.

§ 14 Ewtenswn of R —R¥ R'y is defined as a:[wRy], Whllst
Rz is defined as y[zRy]. - ’

Now Russell’s 2Ry is our R(x y)t
So B.‘ = #[R(z, y)!].
Let us denote this class by the symbol R(-, y) Then

Russell’s R is the relation between R(-», y) and y, which in
our system of notation is written R(—>, -).

Slmlla.rly we shall write Russell’s R as R(-, —) and hls
R‘a‘ as R(z, —).

It is now easy to extend the notation to triadic relations.
Taking the proposition B(x, ¥y, 2)! we shall get the classes

() #R,y, 2)!] = R(=,9,2), eg., those who are jealous of
9 on account of z.

() 9[R, 9, 2)!] = R(x, -, 2), e.g., those .of whom 2 is
jealous on aecount of z.

(111) [Rz, 9, 2)!] = Rz, y, ——>), e g., those on whose account
x is jealous of y. :

Now each of these will give rise at once to the rela.tlons

R('és ) Z) and R(_>’ Y, —)
- R(-, -, 2) and R(z, -, -)
R(-, 9y, =) and R(z, -, -). o
These in the usual way will give rise to classes of classes.
To see what these will be let-us take, e.g.,

R(>, “8, ) and R(“a, -, 2).
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Then it ig easy to see that
~ R(=>, “B, 2) = 9[Hy) . yeB. v = R(—, ¥, 2)]
and that R(“a, -, 2) = 4[(H2) . zea . y = R(z, -, 2)].

E.g., R(->, “B, ) might be the class whose members are
classes of persons who are jealous of some Frenchman on
account of z; whilst R(“a, —>, 2) might be the class whose
members are the classes of persons of whom some English-
man is jealous on account of z. :

It can easily be shown that

) sR(=, “B, ) = #[(:y) . yeB . R(=, 9, 2)!]
whilst.  sR(“a, =, 2) = §[(Hz) . zea . R(z, 3, 2)!]. .

These might be respectively the class of persons each of
whom is jealous of some Frenchman on account of z, and

the class of persons of each of whom some Englishman is
jealous on account of z. -

§ 15. From the (class)? R(~, 8, 2) we can as usual get
the relation R(—, “8; —). And from this, as usual, we can
get the (class)® R(—, “B, “y). Similarly from R(“a, -, 2) we
can get the (class)® R(“a, -, “y). Six such classes are pos-
sible with a triadic relation, viz., :

R(«, B, “y) and R(->, “B, “y)
R(ua’ - “'Y) &nd R(“a, -, "ry)
R(ua’ “/8’ _->) and R(‘Ta’ u@’ __>)‘

1t can be shown without difficulty that ,

ssR(->, “B, “4)=5'sR(—,“B, “y) =2[(HY, 2) . yeB . zey.

k ‘ : R, 9, 2!

Similarly we can show that the logical sum of the logical

sum of the other two corresponding pairs is respectively

Jl(Hz, %) . zea . zey . Rz, ¥, 2)!] and

( Bl(Hz, y) . zea . yeB . R(z, g, 2)!].

~ As an illustration, s's‘R(->, “‘B, “‘y) might be the class of

persons who are jealous of some Frenchman on account of
some German. ' R

§ 16. Extension of R*‘.—We are now in a position to deal

with such notions as R3. Let us begin with dyadic rela-

tions and then extend our results to relations of higher
polyadicity. If R be a dyadic relation R*“8 is defined as ‘

2 (@y) - yeB . Rz, )!]. .

Evidently we must not use the notation R(z, “B) for this
class. For we have already used it to denote a class of
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relational complezes, viz., 4[(Ty) .yeB . % = R(», y)]. But
what we now want to symbohse is a class of terms m a
relational complez.
Now, there is a close and interesting relatlon between
R“B and R(z, “B). .
Remember that R, y)! .=, (quw) . u = Rz, y).

Then RS =2{(qw): @y) .yB.u = R(z, y)]
‘ = a:[({g[u) ueR(z, “B)]
= #[EIR(, “8)) ..

Now I suggest that the class Z[f!R(z, “B) should be
symbolised by the formula R(, “B) Hence for Russell’s
R“B we shall write R(, “B).

Now consider the class

x gl(g®) . zea . zZRy].

This = J[(H2) . zea . R(z, 9)!]
= yl(qw) : (@2) . vea . u = R(w 9]
= g[H'R(“a’ y)]

This can be consistently symbolised as R(“a, D.

‘We have then a notation which is (a) readily extens1ble to
relations of higher degrees of polyadicity, and (b) brings out
forcibly the difference between R‘‘/B—a class defined by re-
lational propositions—and R(z, ‘‘B)—a class whose members

are relational complexes.

" 'We must carefully note that, in spite of the appearance to
the contrary, we cannot pass ba.ck from R(“a,!) to a rela.-
tional complex R(z, !) and suppose that the class R(“a,!) is
generated from the complex R(z,!) by a relation R(— )
between the complex and x. The fact is that whenever we
are given a complex containing an individual or a class as a
term we can go on to derive a relation between it and that
individual or class. And from this we can construct a class
of such complexes by substituting for the individual a class
with two commas or for the class a (class)? with two eommas.

This we have already done with R(—, 4). Buf when we start
with a class of the form R(!, 8) we cannot assume that the
opposite path can be trodden and that R(, “B) must have
been derived from a complex such as R(,y) through a re-
lation R(, -). Under the present circumstances we are
precluded from using the formula Rz, !) or R(, ) for any
purpose whatever. For if we could use it we could derive
from it R(“a,!) and R(, “B) respectively a.ccordmg to the
general rules of our notation. But these have already had a
Ieaning assigned to them, and it is such that they cannot’
have been so derived. For if they had been so derived, they
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would be classes of complexes or of classes, whereas they are
classes of terms in complexes, and in most cases these terms
are not themselves either complexes or classes.

§17. We must now remark that it can easily be provedt‘

that
,S(R(e’ ("B) — R( !’ “B)
and sR(“a, =) = R(“a, !).
~ With this preliminary proposition we, can proceed to ex-
tend the notion of R* to triadic relations. Starting with
R(z, y, 2y we can get the following classes :—

R(““a, !, 2) and R(*“a, y, 1)
R(z, “B, 1) and R(!, “B, 2)'
Rz, !, “y) and R(!, y, “y).
Then R(“a, !, 2) = §[(@z).zea . R(z, y, 2)!] with corre-
sponding meanings for the others. 'We see that
R(“a, !, 2) = sR(“a, -, 2), and similarly for the others.
E.g., R(“a,!, z) might mean the class of people of whom
some Englishmen are jealous on account of z.
Now each of these classes will give rise to_a relation be-
tween itself and the remaining individual in it. These rela-
tions give rise to six classes of classes, viz.,

R(“a, !, “y) and R(“a, “B, 1)
R(“g, ‘(B, !) and R(!’ (‘B, “z)'
R(“a, !, “y) and R(!, “B, “v).

' Now, e.g., R(“a, I, “y) = S[(q2) . zey . 8 = R(“a, |, )] and
R(“a, !, “y) = o[(H%) . zea . =R, !, “y]
It is easy to prove from this that .
sR(“a, !, “y) = s'sR(“a, -, “y) = (w2, @) . zey . xzea .
v - Rz, 9, 9]
Now it will be useful to have & simpler notation for such
classes as s‘R(“a, !, “y) or. s's'R(“a, =, “y). 1 suggest that
they should be denoted by the symbol R(“a, !, “y), etc. An
obvious further simplification which will be useful in dealing"
with relations of higher polyadicity is to write ! for!!. We.
shall thus get three important classes, V2.,
TR, “8, “y) = Z[(HqY, 2) .yeB . 2zey . Rz, ¥, 2)!]
" R(“a) %, “y) = §[(d2, @) . zey . zea . Rz, ¥, 2)!]
and = R(“a, B, 1) = 2 (dz, y) - zea. yeB . R, y, 2)!].
. E.g., the first of these might be the class of people who are
jealous of some Frenchmen on account of some Germans.
§ 18. We have thus found that logical sums of certain

1
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—> classes are important in the case of dyadic relations, and

sums of sums of similar classes in that of triadic relations.

This naturally leads us to inquire whether the logical pro-

ducts of the same classes might not be of sufficient importance

to deserve a special symbolism. :
Let us consider p‘R(—>, “B). It is easy to show that

pB(=, “B) = &[yeB ), Rz, y)!],
and that P'R(“a, =) = g[zea )« Rz, ']

‘We have denoted s‘R(—, “*8) by R(l, “8). Let us denote
the corresponding product by substituting ; (a note of ex-
clamation—or ‘shriek’ as Whitehead would call it—upside
down) for |. 'We shall thus get the two classes

‘ R(“a, i) and R(;, “B).

Now suppose we know that a (R (j, “8). This means that
zea . yeB),, , R(z, y)! The knowledge that 8 (R (‘“a, |) gives
us the same information. Now this is often an important-
fact to symbolise. Suppose, ¢.g., that B is the interior of a
plane angle, and that R(z, y)! means that # can be joined to
y by a segment that does not cut the sides of this angle.
Then B8 (R (!, “B) would express the fact that any two points
within the angle can be joined by a segment that does not
cut the sides of the angle. ' ‘ :

Another important piece of information can be symbolis
by the statement TlanR(l, “8). This tells us that there is
at least one point in @ and one in B which have to each other
the relation R. Now these two .statements may be regarded
as defining two important relations, connected with R, be-
tween two classes. These relations might be symbolised
respectively by R, and R,. Then

R, = df[zea.yeB).. ,. R, y)!] Di.
and R, = d@[Hz, 1) . zea. yeB . Rz, 1)!]. DL.

§ 19. We can now go on to apply.the same principles to
triadic relations. 'We have so far considered only such classes

as RQl, “B, “y), de, s'sR(—, “B, “y). But we could evi- - .

dently consider three other classes obtained from
| R(=,“B, “y), viz.,
p‘s‘R(=>, “B, “¢) which might be written R(j!, ““‘B‘“y) .

P‘P‘R('é, “B’ ‘“'—);_) ’ ”” R’)“’ “B, “'Y)
and ' .
s‘p‘R(»’ “B’ “(z) b2 N bRl R(!i’ “18’ “'7)-

Of these classes only one, so far as I have been able to see,
is likely to be of great logical importance. Thisis R(j!, B, “‘y).
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. It can be shown without much difficulty that
R, “B, “y) = #yeB . zey ),... Rz, y, 2)!].°
This class derived from a triadic relation therefore corre-
sponds to R(j, ““B) derived from a dyadic relation.
Clearly a(R(j!, “B, “v).=:zea.yeB. ze¥ )uy.. Rz, ¥, 2).
We thus have a derived triadic relation between a, 8, v
which we can denote by R,,, so that -

RP' (a’ 18’ '}')' = . ll( R‘ (l,’ “B’ “'Y).

Tﬁe dérived relation, obtained from a triadic R and com-
parable to R, from.a dyadic R, may be symbolised by R..

R.(a, B, )i =. (HZ, ¥, 2) .zea.yeB . zey . R(z, y, 2)! .
=. qlanR{; “B, “¥). .

§ 20. Geometrical Illustration.—It may be of interest at
this point to illustrate our notation by a geometrical example.
For this purpose I shall translate the axioms on the rela-
tion of between in Hilbert's Foundations of Geometry (Eng.
Trans., p. 6) into our notation. . ,

Let 7 stand for the class of points, and A for the class of
rectilinear relations. Then the statement aeCl‘mns‘Cl“C‘A
will mean a is a class of collinear points. With these pre-
liminary pieces of notation settled we can begin to deal with
the relation of between. Let T(z, y, 2)! denote z is between
y and z. ,

Then T(z, ¥, 2)!.) . ¢‘zUsyUizeClrns‘Cl“C“An3.

Now for Hilbert’s axioms :—

(1) ‘If A, B, and C are points of a straight line, and,B lies
between A and C, then B lies also between C and A.’

Translation.—T(—, y, z) (T(->, 2, y).

(2 ‘If A and C are two points of a straight line then
there exists at least one point B lying between A and C, and
at least one point D so situated that C lies between A and D.’

Translation.—y, zer .y F 2.). AT (—,y,2). ATy, -).

8) ‘Of any three points situated on a straight line there
is always one and only one between the other two.’

Translation.—aeCl‘rns‘Cl*“C*An3 ). T(!, “a, “a)nael.

1(4) ‘Any four points A, B, C, D of a straight line can
always be arranged so that B shall lie between A and C and
also between A and D, and, furthermore, so that C shall lie
" between A and D and also between B and D.’

I must remark in the first place that this axiom is very
badly stated. You cannot arrange points on a line; they are
in the order in which they are, and there is an end of the

o1 The ‘axiom' has since been deduced from Hilbert’s other axioms.
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matter. What you can arrange is the letters by which you
shall denote them. But an axiom can hardly deal with
typographical matters like this. I shall therefore substitute
for Hilbert’s axiom the following, which, when combined
ngh (3) seems to give all the necessary propertles of hnear
-order :—
aeCl‘mns‘Cl“C“And . ) : anT (!, “a, “a)e2: anT(!!, ‘“a, “a)
(TN, “anT(, “a, “a), “a - T(!, “a, “a)}
nT{!, “a - T, “a, “a), “a - T, “a, “a)}.

This formidable looking proposition asserts that if a be a
«class of four collinear points then the members of a which
are between members of a are two in number, Moreover,
the members of a which are between members of a are be-
. tween a member of a which is and a member of a which is
not itself between members of a. Furthermore, the members
of a which are between members of a are also between
members of @ which are not between members of a.

This is a fairly complex statement, and our notation ex-
‘presses it with reasonable simplicity.

§ 21. Eatension of D, @, and C.—If R be a dyadic relation
DR is deﬁned as w[((t[y) R(z, y)!] and ‘R is defined as
Jl(@=) . Rz, »)!].

Now conmder the class R(!, “V) when V is the universe of -
-entities of the type of ¥ in R(z, y). ’

R(, “V) = 2[(qYy) . yeV . Rz, y)'].

But yeV . Rz, y)!=R(z, y)!
Hence DR = R(, “V).
‘Similarly a‘R = RV, ).

Hence D, on our notation, is - (!, “V)and qis — (“V,)
S0 D\ becomes A, V) and a‘“» becomes ‘“A(“V, 1). )
Now C‘R is defined as D’RUQ‘R. Hence for us

CR = R(, “VYUR(V, ).
- It is easy to extend these results to relations of higher
degrees of polyadicity. Here, however, the notion of domain
.and co-domain breaks down ; it is better to say that there are
as many different domains as there are degrees of polyadicity
in the relation. Suppose we have a triadic R. Then we can
denote its three domains by D;‘R, D,;'R, and D;‘R.

Then DR = R(!, “V, “V)
D, R = R(“V, Il, “V)
and DR = R(“V, “V, Il),

D,, Dy, and D, will be the correspondmg formulee with —
written for R. Naturally

C‘R = R(!, “V, “V)UR(“V, N, “VYUR(“V, “V, II).
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It might prove convenient, and could do no harm, to denote:
C‘R by R(l, !) for dyadic relations and by R (1%, 12, 1) for triadic
ones. But I should suppose that here, and indeed in all
cases where we have dyadic relations whose dyadicity is.
guaranteed by logic itself and not merely postulated in the-
axioms of some special science with which we are dealing,
the old Russell-Whitehead notation should be conserved
with the slight modifications that I have suggested about.
‘domains. Hence, although we have shown that R(!,“V,«V)
is the proper and consistent way to express D;'R on our
notation, it would be pedantic not to use the shorter and
more convenient D;R. The same remarks apply to such
purely logical dyadic relations as s, p, Cl, etc., which nearly
always occur in actual life in descriptive functions, arid which.
are known by every one to be dyadic.

§ 22. Eaztension of R‘y.—It remains for us to give a con-
sistent symbolism for the notion R‘y, ¢.e., the term which
has the relation R to y. Now here we are met by a problem.
somewhat similar to that which faced us in dealing with
R“B.  We then needed to symbolise a class of terms instead
of a class of complexes ; we succeeded in doing this by means

-
of the connexion between R“B and s‘R‘“8. Here we want.
to symbolise the ferm which has the relation R to y. Now,
in particular cases, we have been able to do this with ease.
E.g., we have symbolised the class which has the relation .

- .

R to y by R(->, ), and we have constantly symbolised the
relation which a complex has to its various terms. H.g.,
R( -, y, 2) is our standard way of symbolising

(S) Rz, y, 2) Sz]

in Russell’s notation. But it does not follow that we can easily
find a consistent method of symbolising the term which has.
the relation R to y when this term is neither a class nor 4.
relation.

The notation that suggests itself is R(‘, ) for R and
R(z, ¢) for R‘z. If this be adopted, R¢ would be represented
by R(‘, = ) and R by R( -, 9.

Let us now consider what would be meant by R(‘, “B),
‘We should have zeR(‘, “B) . =. (qy) . yeB .z = R(, ¥).

E.g., if B stands for Englishwomen and: R for the relation
of husband, then R(‘, ‘‘B) is the class of men who are the
only husbands of Englishwomen. R(, “@B) is thus a class
which contains none of the husbands of Englishwomen who
are polyandrists. ,
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Let us now extend the notation to triadic relations.

R(, y, #) will be the z such that R(z, y, 2)! .
R(m’ " z) ” ”» y ” ” R(x’ y’ z)!
}R(.%, Y, ‘) ) 9y 2 L ” R(Z’, Y, Z)'. )

It is easy to see how this notion can be extended by
analogy with the extensions of R(->, ¢, 2).

§ 23. Conwverses of Relations.—The notion of converses
ceases to be of any great importance with our notation, for
in a great many cases all that is needed of converses is
expresséd by the order of terms Wlthln the bracket

Any relation will have as many ‘converses’ as there are,
permutations among its terms. Thus to any triadic relation
will correspond five others. The name converse seems no
longer applicable, it will be better to call these correlated
relations. Let us start with R(z, y, 2), and write
R@, y, 4 = 8@, 2, 2) = T, @, y) = UG, 9, 2) = V@, 2, 2)

= W(, 2, y).

Now in U(z, y, ) the second term is in the same position
as in Rz, y, 2), and the remaining ones are interchanged.
Let us write to indicate this R,(z, v, ) = Rz, ¥, 2). Then
U = R, Similarly V= R; and W = R,. It remains to
symbolise S and T. )

Suppose we start with the order y, 2z, 2. Then keeping
. the first term fixed, and interchanging the other two, we get.
Y, ®, 2, Now keep the third term fixed, and interchange the
other two. We get z, ¥y, 2. 'We may represent S therefore
as Ry. It is easy to see that it could equally be represented
by Ry, or Ry,  Thus, taking R,,, we should first get 2,9, T,
and then z, y, .

Hence 5 = Rz = Ry = :

Now the essential point here is not that such and such
numbers should be chosen, but that some pair should be
chosen in direct cyclic order. Hence we might represent

S by R

Slmllarly for T. Starting with the order 2z, z, y we can
first keep = fixed and so get y, z, 2= We can then keep #
fixed and so get z, ¥, 2. Thus T = Ry, As before we can
ShOW thait T - R13 = R32 = R21-

Here the order is the inverse cyclic order. So T can be

represented by R If R be tnadlc the five correlated rela-

tions are therefore R;, Bz, R,, R and R I am afraid that
the notation for the relations correlated with those of higher
order than the third would be very complex. N
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